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MODULE 1  ORGANIZATION AND ARCHITECTURE 

 

Unit 1  Introduction to Computer Architecture  

and Organization  

Unit 2  Instruction Sets Characteristics  

and Functions 

Unit 3  Types of Operands 

 

 

UNIT 1 INTRODUCTION TO COMPUTER 

ARCHITECTURE AND ORGANIZATION  

 

CONTENTS 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Computer Organization and Architecture 

3.2 Structure and Function 

3.3 Computer Components 

3.4 Instruction Fetch and Execute 

4.0  Conclusion 

5.0  Summary 

6.0  Tutor-Marked Assignment 

 

1.0 INTRODUCTION 

 

Despite the variety and pace of change in the computer field, certain 

fundamental concepts consistently apply throughout. The application of 

these concepts depends on the current state of technology and the 

price/performance objectives of the designer. 

 

Many computer manufacturers offer a family of computer models, all 

with the same architecture but with differences in their organization. In a 

class of computers called microcomputers, the relationship between 

architecture and organization is very close. Changes in technology not 

only influence organizations but also result in the introduction of more 

powerful and complex architectures. However, because a computer 

organization must be designed to implement a particular architectural 

specification, a thorough treatment of organization requires a detailed 

examination of the architecture as well. 
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2.0 OBJECTIVES 

 

At the end of this unit, you should be able to: 

 

• Explain the operational units of a computer system. 

• Outline types of operands and operations specific by machine 

instruction. 

• Explain opcodes, operands, and addressing modes 

 

3.0 MAIN CONTENT 

 

3.1 COMPUTER ORGANIZATION AND ARCHITECTURE 

 

Although it is difficult to give a precise definition, a consensus exists 

about the general area covered by it. Computer organization refers to the 

operational units and their interconnection that realize the architectural 

specification. 

 

Examples of architectural attributes include the instruction set, the 

number of bits used to represent various data types (e. g numbers, 

characters), I/O mechanism, and techniques for addressing memory. 

Organizational attributes include hardware details transparent to the 

programmer, such as control signals; interfaces between the computer 

peripherals, and memory technology used. 

 

In computer engineering, computer architecture is a set of rules and 

methods that describe the functionality, organization, and implementation 

of computer systems. The architecture of a system refers to its structure 

in terms of separately specified components of that system and their 

interrelationships. 

 

Computer architecture consists of rules and methods or procedures that 

describe the implementation, and functionality of the computer systems. 

We can define computer architecture based on its performance, 

efficiency, reliability, and cost of the computer system. It deals with 

software and hardware technology standards. 

 

3.2 STRUCTURE AND FUNCTION 

 

A computer is a computer system, contemporary computers contain 

millions of elementary electronic components. 

• Structure: How the components are interrelated. 

• Function: The operation of each component as part of the 

structure. 
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In terms of description, there are two choices: starting at the bottom and 

building up to a complete description, or beginning with a top view and 

decomposing the system into its subparts. Evidence from several fields 

suggests that the top-down approach is the clearest and most effective. 

 

The approach taken is that the computer be described from the top down. 

 

Both the structure and functioning of a computer are simple. Figure 1 

depicts the basic functions that a computer can perform. In general terms, 

there are only four: 

- Data processing 

- Data storage 

- Data movement 

- Control 

 

 
 

Figure 1: The Basic Functions of Computer 

 

The computer, of course, must be able to process data. The data may take 

a wide variety of forms, and the range of processing requirements ID 

broad. It is also essential that a computer stores data. Even if the computer 

is processing data on the fly (i.e. data come in and get processed and the 

results go out immediately) the computer must temporarily store at least. 

Those pieces of data that are being worked on at any given moment. Files 

of data are stored on the computer for subsequent retrieval and update. 

 

The computer must be able to move data between itself and the outside 

world. The computer's operating environment consists of devices that 

serve as either sources or destinations of data. When data are received 
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from or delivered to a device that is directly connected to the computer, 

the process is known as input-output (I/O), and the device is referred to 

as a peripheral. When data are moved over longer distances, to or from a 

remote device, the process is known as data communications. Finally, 

there must be control of these three functions. Ultimately, this control is 

exercised by the individuals who provide the computer with instructions. 

Within the computer, a control unit manages the resources of the 

computer and orchestrates the performance of its functional parts in 

response to those instructions. 

 

There are four main structural components 

- The central processing unit (CPU): Controls the operations of 

the computer and performs its data processing functions; often 

simply referred to as a processor. 

- Main memory: Stores data 

- I/O: Moves data between the computer and its external 

environment. 

- System interconnections: Some mechanism that provides for 

communication among CPU, main memory, and I/O. A common 

example of system interconnection is through a system bus, 

consisting of several conducting wires to which all the other 

components attach. 

 

However, the most interesting and complex component is the CPU. Its 

major structural components are as follows: 

- Control unit: Controls the operations of the CPU and hence the 

computer. 

- Arithmetic and logic unit (ALU): Performs the computer data 

processing functions. 

- Registers: Provides storage internal to the CPU. 

- CPU interconnection: Some mechanism that provides for 

communication among the control unit, ALU, and registers. 

 

3.3 COMPUTER COMPONENTS 

 

Virtually all contemporary computer designs are based on concepts 

developed by John Von Neumann at the Institute for Advanced Studies 

Princeton. Such a design is referred to as the Von Neumann architecture 

and is based on three key concepts: 

• Data and instructions are stored in a single read-write memory. 

• The contents of this memory are addressable by location, without 

regard to the type of data contained there. 

• Execution occurs sequentially (unless explicitly modified) from 

one instruction to the next. 
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There is a small set of basic logic components that can be combined in 

various ways to store binary data and to perform arithmetic and logical 

operations on that data. If there is a particular computation to be 

performed, a configuration of logic components designed specifically for 

that computation could be constructed. We can think of the process of 

connecting the various components in the desired configuration as a form 

of programming. The resulting "program" is in the form of hardware and 

is termed a hardwired program. 

 

Now consider this alternative. Suppose we construct a general-purpose 

configuration of arithmetic and logic functions. This set of hardware will 

perform various functions on data depending on control signals applied to 

the hardware. In the original case of customized hardware, the system 

accepts data and produces results Figure 2a. With general-purpose 

hardware, the system accepts data and control signals and produces 

results. Thus, instead of rewiring the hardware for each new program, the 

programmer merely needs to supply a new set of control signals. 

 

How shall control signals be supplied? The answer is simple but subtle. 

The entire program is a sequence of steps. At each step, some arithmetic 

or logical operation is performed on some data. For each step, a new set 

of control signals is needed. Let us provide a unique code for each 

possible set of control signals, and let us add to the general-purpose 

hardware a segment that can accept a code and generate control signals 

(Figure 2b). 

 

 
 

Figure 2. Hardware and Software Approaches 
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Programming is now much easier. Instead of rewiring the hardware for 

each new program, all we need to do is provide a new sequence of codes. 

Each code is, in effect, an instruction, and part of the hardware interprets 

each instruction and generates control signals. To distinguish this new 

method of programming, a sequence of codes or instructions is called 

software. 

 

Figure 2b indicates two major components of the system: an instruction 

interpreter and a module of general-purpose arithmetic and logic 

functions. These two constitute the CPU. Several other components are 

needed to yield a functioning computer. Data and instructions must be put 

into the system. For this, we need some sort of input module. This module 

contains basic components for accepting data and instructions in some 

form and converting them into an internal form of signals usable by the 

system. A means of reporting results is needed, and this is in the form of 

an output module. Taken together, these are referred to as I10 

components. 

 

One more component is needed. An input device will bring instructions 

and data in sequentially. But a program is not invariably executed 

sequentially; it ma, jump around (e.g., the IAS jump instruction). 

Similarly, operations on data may require access to more than just one 

element at a time in a predetermined sequence Thus, there must be a place 

to store temporarily both instructions and data. That module is called 

memory, or main memory to distinguish it from external storage of 

peripheral devices. Von Neumann pointed out that the same memory 

could be used to store both instructions and data. 

 

Figure 3 illustrates these top-level components and suggests the 

interaction among them. The CPU exchanges data with memory. For this 

purpose, it typically makes use of two internal (to the CPU) registers: a 

memory address register (MAR), which specifies the address in memory 

for the next read or write, and a memory buffer register (MBR), which 

contains the data to be written into memory receives the data read from 

memory. Similarly, an I/0 address register (I/OAR specifies a particular 

1/0 device. An I/0 buffer (I/OBR) register is used for the exchange of data 

between an I/0 module and the CPU. 

 

A memory module consists of a set of locations, defined by sequentially 

numbered addresses. Each location contains a binary number that can be 

interpreted as either an instruction or data. A 1/0 module transfers data 

from external devices' CPU and memory, and vice versa. It contains 

internal buffers for temporarily holding these data until they can be sent 

on. 
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Having looked briefly at these major components, we now turn to an 

overview of how these components function together to execute 

programs. 

 

 
 

Figure 3. Computer Components Top-level View 

 

The key elements of program execution. In its simplest form, instruction 

processing consists of two steps: The processor reads (fetches) 

instructions from memory one at a time and executes each instruction. 

Program execution consists of repeating the process of instruction fetch 

and instruction execution. The instruction execution may involve several 

operations and depends on the nature of the instruction (see, for example, 

the lower portion of Figure 2.4). 

 

The processing required for a single instruction is called an instruction 

cycle.  

 

The two steps are referred to as the fetch cycle and the execute cycle. 

Program execution halts only if the machine is turned off, some sort of 

unrecoverable error occurs, or a program instruction that halts the 

computer is encountered. 
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3.4 Instruction Fetch and Execute 

 

At the beginning of each instruction cycle, the processor fetches an 

instruction from memory. In a typical processor, a register called the 

program counter (PC) holds the address of the instruction to be fetched 

next. Unless told otherwise, the processor. Using the simplified two-step 

description given previously, the instruction cycle is depicted in Figure 4. 

 

 
 

Figure 4. Basic Instruction Cycle 

 

Explain an instruction fetch using the components of Figure 3 

1)  The PC holds the address of the next instruction to execute. The 

contents of the PC are placed on the System Bus and the PC is 

incremented to the next instruction to be executed.  

2)  The instruction from Main Memory is retrieved and placed into the 

IR using the System Bus.  

 

Note: The MAR and MBR registers are also used in the process but for 

now we will ignore their use for simplicities sake. 

 

The processor will then interpret the instruction and perform an action. 

What are these possible actions? always increments the PC after each 

instruction fetch so that it will fetch the next instruction in sequence (i.e., 

the instruction located at the next higher memory address). So, for 

example, consider a computer in which each instruction occupies one 16-

bit word of memory. Assume that the program counter is set to location 

300. The processor will next fetch the instruction at location 300. On 

succeeding instruction cycles, it will fetch instructions from locations 

301, 302, 303, and so on. This sequence may be altered, as explained 

presently. 

 

The fetched instruction is loaded into a register in the processor known as 

the instruction register (IR). The instruction contains bits that specify the 

action the processor is to take. The processor interprets the instruction and 

performs the required action. In general, these actions fall into four 

categories: 

i. Processor-memory: Data may be transferred from processor to 

memory or from memory to processor. 

ii. Processor-I/O: Data may be transferred to or from a peripheral 
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device be transferring between the processor and an I/O module. 

iii. Data processing: The processor may perform some arithmetic or 

logic operation on data. 

iv. Control: An instruction may specify that the sequence of 

execution is altered. For example, the processor may fetch an 

instruction from location 149, which specifies that the next 

instruction is from location 182. The processor will remember this 

fact by setting the program counter to 182. Thus, on the next fetch 

cycle, the instruction will be fetched from location 182 rather than 

150. 

 

An instruction's execution may involve a combination of these actions. 

The processor contains a single data register called an accumulator (AC). 

Both instructions and data are 16 bits long. Thus, it is convenient to 

organize memory using 16-bit words. The instruction format provides 4 

bits for the opcode so that there can be as many as 24 = 16 different 

opcodes, aup to 212 = 4096 (4K) words of memory can be directly 

addressed. Address 941 and stores the result in the latter location. Three 

instructions, which be described as three fetch and three execute cycles, 

are required: 

1. The PC contains 300, the address of the first instruction. This 

instruction value is 1940 in hexadecimal) is loaded into the 

instruction register IR anPC is incremented. Note that this process 

involves the use of a memory dress register (MAR) and a memory 

buffer register (MBR). For simply these intermediate registers are 

ignored. 

2. The first 4 bits (first hexadecimal digit) in the IR indicate that the 

AC is loaded. The remaining 12 bits (three hexadecimal digits) 

specify the ac (940) from which data are to be loaded. 

3. The next instruction (5941) is fetched from location 301 and 

incremented. 

4. The old contents of the AC and the contents of location 941 are 

added an result is stored in the AC. 

5. The next instruction (2941) is fetched from location 302 and the F 

is incremented. 

6. The contents of the AC are stored in location 941. 

 

In this example, three instruction cycles, each consisting of a fetch cycle 

execute cycle, are needed to add the contents of location 940 to the 

contents C With a more complex set of instructions, fewer cycles would 

be needed. Some processors, for example, included instructions that 

contain more than one address. Thus the execution cycle for a particular 

instruction on such prop could involve more than one reference to 

memory. Also, instead of memory references, an instruction may specify 

an I/O operation. Figure 5 shows the characteristics of a hypothetical 

machine. 
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Figure 5. Characteristics of Hypothetical Machine 

 

Program Counter (PC) = Address of Instruction 

Instruction Register (IR) = Instruction begin executed 

Accumulator (AC) = Temporary storage 

 

 (c) Internal CPU Registers 

 

0001 = Load AC from Memory 

0010 = Store AC to Memory 

0101 = Add to AC from Memory 

 

(d) Partial list of opcodes 

 

For example, the PDP-11 processor includes an instruction, expressed 

physically as ADD B, A, that stores the sum of the contents of memory 

location B into memory location A. A single instruction cycle with the 

following steps 

▪ Fetch the ADD instruction. 

▪ Read the contents of memory location A into the processor. 

▪ Read the contents of memory location B into the processor. To 

contents of A are not lost, the processor must have at least two 

registers storing memory values, rather than a single accumulator. 

▪ Add the two values 

▪ Write the result from the processor to memory location A. 

 

Thus, the execution cycle for a particular instruction may involve more 

than one reference to memory. Also, instead of memory references, an 

instructor specifies an I/O operation. 

 

For any given instruction cycle, some states -null and others may be 

visited more than once. The states can be described as follows: 

 

Instruction address calculation (ac): Determine the address of the next 

instruction to be executed. Usually, this involves adding a fixed number 

to the address of the previous instruction. For example, if each instruction 

is 16 bits long and memory is organized into 16-bit words, then add 1 to 
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the previous ad- dress. If, instead, memory is organized as individually 

addressable 8-bit bytes, then add 2 to the previous address. 

 

 
 

Figure 6. The Instruction Cycle State with Interrupts 

 

Instruction fetch (if): Read instruction from its memory location into the 

processor. 

 

Instruction operation decoding (iod): Analyze instruction to determine 

the type of operation to be performed and operand(s) to be used. 

 

Operand address calculation (oac): If the operation involves reference 

to an operand in memory or available via I/O, then determine the address 

of the operand. 

 , 

Operand fetch (of): Fetch the operand from memory or read it in from 

1/O. Data operation (do): Perform the operation indicated in the 

instruction. Operand store (os): Write the result into memory or out to I/O. 

States in the upper part of Figure 6 involve an exchange between the 

processor and either memory or a 1/O module. States in the lower part of 

the diagram involve only internal processor operations. The oac state 

appears twice, because an instruction may involve a read, a write, or both. 

However, the action performed during that state is fundamentally the 

same in both cases and so only a single state identifier is needed. Also 

note that the diagram allows for multiple operands and multiple results 

because some instructions on some machines require this. For example, 

the PDP-11 instruction ADD A, B results in the following sequence of 

states: iac, if, iod, oac, of, oac, of, do, oac, os. 

 

Finally, on some machines, a single instruction can specify an operation 

to be performed on a vector (one-dimensional array) of numbers or a 

string (one- dimensional array) of characters. As Figure 6 indicates, this 

would involve repetitive operand fetch and/or store operations. 
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 Table 1. Classes of Interrupts 

Program Generated by some conditions that occur as a result of an 

instruction execution, such as arithmetic overflow, 

division by zero, attempt to execute an illegal machine 

instruction, or reference outside a user’s allowed memory 

space. 

Timer Generated by a timer within the processor. This allows the 

operating system to perform certain functions regularly. 

I/O Generated by an I/O controller, to signal normal 

completion of an operation to signal a variety of error 

conditions. 

Hardware 

failure 

Generated by a failure such as power failure or memory 

parity error. 

 

Self-Assessment Exercises 1 

Answer the following questions by choosing the most suitable option: 

 

1.  What is the primary difference between computer organization and 

computer architecture? 

A.  Organization deals with software while architecture deals 

with hardware 

B.  Architecture refers to attributes visible to programmers 

while organization refers to operational units and their 

interconnections 

C.  Organization is more important than architecture in system 

design 

D.  There is no difference between the two terms 

 

2.  Which of the following is NOT one of the four basic functions of 

a computer? 

A.  Data processing 

B.  Data storage 

C.  Data encryption 

D.  Data movement 

 

3.  What are the main structural components of a computer system? 

A.  CPU, Main memory, I/O, System interconnections 

B.  Hardware, Software, Data, Procedures   

C.  Input, Processing, Output, Storage 

D.  Registers, ALU, Control Unit, Cache 

 

Self-Assessment Exercises 2 

Fill in the gaps in the sentences below with the most suitable words: 

 

1.  The ________ processing unit (CPU) controls the operations of the 

computer and performs its data processing functions. 
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2.  The Von Neumann architecture is based on three key concepts, one 

of which is that data and ________ are stored in a single read-write 

memory. 

3.  The instruction cycle consists of two main steps: the ________ 

cycle and the ________ cycle. 

 

4.0  CONCLUSION 

 

Computer architecture and organization form the foundation of modern 

computing systems. Architecture defines what the system can do - the 

instruction set, data types, addressing modes, and interface specifications 

visible to programmers. Organization, on the other hand, determines how 

these architectural specifications are implemented through hardware 

components and their interconnections. The Von Neumann architecture 

remains the dominant model, with its key principles of stored program 

concept, sequential execution, and unified memory for instructions and 

data. Understanding the relationship between structure and function, 

along with the basic computer components (CPU, memory, I/O, and 

system interconnections), provides the essential knowledge needed to 

comprehend how modern computers operate and execute instructions. 

 

5.0  SUMMARY 

 

This unit introduced the fundamental concepts of computer architecture 

and organization. Computer architecture refers to the attributes of a 

system visible to programmers, including instruction sets, data types, and 

addressing mechanisms. Computer organization deals with the 

operational units and their interconnections that realize the architectural 

specifications. The four basic functions of a computer are data processing, 

data storage, data movement, and control. A computer system consists of 

four main structural components: the CPU (which includes the control 

unit, ALU, and registers), main memory, I/O systems, and system 

interconnections. The Von Neumann architecture, based on the stored 

program concept, sequential execution, and unified memory, forms the 

foundation of modern computer design. The instruction cycle, consisting 

of fetch and execute phases, describes how computers process individual 

instructions. 

 

6.0  TUTOR-MARKED ASSIGNMENT 

 

1.  Explain the distinction between computer architecture and 

computer organization. Provide two examples of architectural 

attributes and two examples of organizational attributes. (10 

marks) 

2.  Describe the four basic functions of a computer system and explain 

how these functions interact during program execution. (8 marks) 
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3.  The Von Neumann architecture is fundamental to modern 

computer design. List and explain the three key concepts on which 

this architecture is based. Discuss one advantage and one 

limitation of this architectural approach. (12 marks) 

 

Possible Answers to Self-Assessment Exercises 

 

Self-Assessment Exercise 1 

1. B 

2. C   

3. A 

 

Self-Assessment Exercise 2 

1. Central 

2. Instructions 

3. Fetch, execute 
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UNIT 2 INSTRUCTION SETS CHARACTERISTICS  

 

CONTENTS 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Instruction Formats 

3.1.1 Instruction Length 

3.2 Instruction Sets Characteristics 

3.2.1 Elements of Machine Instruction 

3.2.2 Instruction Representation 

3.3 Instruction Set Design 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor- Marked Assignment 

7.0 References/ Further Reading 

 

1.0 INTRODUCTION 

 

One boundary where the computer designer and the computer 

programmer can view the same machine is the machine instruction set. 

From the designers’ point of view, the machine instruction set provides 

the functional requirements for the processor. Implementing the processor 

is a task that largely involves implementing the machine instruction set. 

 

2.0 OBJECTIVES 

 

At the end of this unit, you should be able to:  

 

• Explain the instruction format 

• Understand the instruction length and characteristics 

 

3.0 MAIN CONTENT 

 

3.1 INSTRUCTION FORMATS 

 

An instruction format defines the layout of the bits of an instruction in 

terms of its constituent fields. An instruction format must include an 

opcode and implicitly or explicitly, zero or more operands, and The 

format must implicitly and explicitly, indicate the addressing mode for 

each operand. For most instruction sets, more than one instruction format 

is used. 
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3.1.1 INSTRUCTION LENGTH 

 

The most basic design issue to be faced is the instruction format length. 

These decisions effects and are affected by, memory size, memory 

organization bus structure process complexity, and processor speed. This 

decision determines the richness and flexibility of the machine. 

 

3.2 INSTRUCTION SETS CHARACTERISTICS 

 

The operation of the processor is determined by the instructions it 

executes referred to as machine instructions or computer instructions. The 

collection of different instructions that the processor can execute is 

referred to as the processor's instruction set. 

 

3.2.1 ELEMENTS OF MACHINE INSTRUCTION 

 

These elements are as follows: 

- Operation code: Specifies the operation to be performed (e.g., 

ADD, I/O). The operation is specified by a binary code, known as 

the operation code or opcode. 

- Source operand reference: This operation may involve one or 

more source operands, that is operands that are inputs for the 

operation 

- Results from operands reference: The operation may produce a 

result 

- Next instruction reference: This tells the processor where to fetch 

the next instruction after the execution of this instruction is 

complete. 

 

The address of the next instruction to be fetched could be either a real 

address or a virtual address, depending on the architecture. Generally, the 

distinction is transparent to the instruction set architecture. In most cases, 

the next instruction to be fetched immediately follows the current 

instruction. In most cases, there is no explicit reference to the next 

instruction when an explicit reference is needed then the main memory or 

virtual memory address must be supplied. Source and result operands can 

be in one of four areas. 

- Main or virtual memory: As with the next instruction references, 

the main or virtual memory address must be supplied. 

- Processor register: With rare exception, a processor contains one 

or more registers that may be referenced by machine instructions. 

If only one register exits reference to it may be implicit. If more 

than one register exists, then each register is assigned a unique 

name or number, and the instruction must contain the number of 

the designed register 

- Immediate: The value of the operand is contained in a field in the 
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instruction being executed. 

- I/O device: The instruction must specify the I/O module and 

device for operation. If memory-mapped I/O is used, this is just 

another main or virtual memory address 

 

Self-Assessment Exercises 1 

 

Answer the following questions by choosing the most suitable option: 

 

1. Which of the following is NOT an element of a machine instruction? 

   A. Operation code 

   B. Source operand reference 

   C. Memory address register 

   D. Next instruction reference 

 

2. What does the opcode specify in an instruction? 

   A. The memory location of data 

   B. The operation to be performed 

   C. The size of the operand 

   D. The addressing mode 

 

3. How many different opcodes can be represented with 4 bits? 

   A. 4 

   B. 8 

   C. 12 

    D. 16 

 

3.2.2 INSTRUCTION REPRESENTATION 

 

In a computer, each instruction is represented by a sequence of bits. The 

instruction is divided into fields corresponding to the constituent elements 

of the instruction. Opcodes are represented by abbreviations called 

mnemonics that indicate their operation. Common examples include: 

ADD add 

SUB SUBTRACT 

MUL multiply 

DIV divide 

LOAD Load data form memory STOR Store data to 

memory 

Operands are also represented in a symbolic manner. For example 

the instruction ADD, R, Y. 

 

This may mean adding the value contained in data location Y to the 

contents of register R. In this example, Y refers to the address of a location 

in memory, and R refers to a particular register. Note that the operation is 

performed on the contents of a location, not on its address: 
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Thus, it is possible to write a machine-language program in symbolic 

form. 

 

X= 413 

Y= 414 

 

A simple program accepts this symbolic input, converts opcodes and 

operand references to binary form, and constructs binary machine 

instructions. However, symbolic machine language remains a useful tool 

for describing machine instructions, and we will use it for that purpose. 

 

Assume that variables X and Y correspond to locations 413 and 414, 

respectively. Assuming a simple set of machine instructions, this 

operation can be accomplished with three instructions. 

1. Load a register with the content of memory location 413. 

2. Add the contents of memory location 414 to the register. 

3. Store the contents of the register in memory location 413. 

 

3.3 INSTRUCTION SET DESIGN 

 

One of the most interesting and most analyzed, aspects of computer 

design is instruction set is very complex because it affects so many aspects 

of the computer system. The instruction defines any of the functions 

performed by the processor and thus has a significant effect on the 

implementation of the process. The instruction set is the programmer’s 

means of controlling the processor. Thus, programmer requirements must 

be considered in designing the instruction set. The most important of these 

fundamental design issues include the following: 

- Operation repertoire: How many and which operations to 

provide and how complex operations should be. 

- Data types: The various types of data upon which operations are 

performed. 

- Instruction format: Instruction length (in nits) number of assesses 

size of various fields and so on. 

- Registers: Number of processor registers that can be referenced 

by instructions and their use. 

- Addressing: The mode or modes by which the address of an 

operand is specified. 

 

These issues are highly interrelated and must be considered together in 

designing an instruction set. 

 

4.0 CONCLUSION 

 

Despite the variety and pace of change in the computer field, certain 

fundamental concept applies consistently throughout. The application of 
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these concepts depends on the current state of technology and the 

price/performance objectives of the designer. 

 

5.0 SUMMARY 

 

Computer organization refers to the operational units and their 

interconnections that realize the architectural specification. 

 

Computer architecture refers to those attributes of a system visible to a 

programmer or those attributes that have a direct impact on the logical 

execution of a program. The collection of different instructions that the 

processor can execute is referred to as the processor’s instruction set and 

an to instruction format defines the layout of the bits of instruction, in 

terms of its constituents’ fields. 

 

Possible Answers to Self-Assessment Exercises 

 

Self-Assessment Exercise 1 

1. C 

2. B 

3. D 

 

6.0 TUTOR- MARKED ASSIGNMENT 

 

1. What in general terms is the distinction between computer 

organization and computer architecture? 

2. What are the four main functions of a computer? 

3. List and briefly explain five important instruction set design issues 
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MODULE 2  COMPUTER ARITHMETIC 

 

UNIT 1: The Arithmetic Implementation 

UNIT 2: Control Flow Design/Implementation 

 

UNIT 1 THE ARITHMETIC IMPLEMENTATION 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main content 

3.1 The arithmetic and basic unit 

3.2 Integer representation 

3.3 Integer Arithmetic 

3.4 Floating point representation 

3.5 Floating point arithmetic 

4.0 Conclusion 

5.0 Summary 

6.0 T.M.A 

7.0 Reference and Further Reading 

 

1.0 INTRODUCTION 

This unit focuses on the most complex aspect of the ALU, computer 

arithmetic. Computer arithmetic is commonly performed on two very 

different types of numbers: integer and floating point. In both cases, the 

representation chosen is a crucial design issue and is treated first. 

Computer arithmetic is the branch of computer science that deals with the 

representation and manipulation of numerical quantities in a computer 

system. Here are some basic concepts and operations involved in 

computer arithmetic: 

1. Number systems: Computers use different number systems to 

represent numerical quantities, including binary (base 2), decimal 

(base 10), and hexadecimal (base 16) systems. In binary system, 

each digit can only be either 0 or 1, while in decimal system, each 

digit can be any of the 10 digits from 0 to 9. 

2. Arithmetic operations: The basic arithmetic operations used in 

computer arithmetic are addition, subtraction, multiplication, and 

division. These operations are usually performed using arithmetic 

circuits within the CPU. 

3. Overflow: In computer arithmetic, overflow occurs when the result 

of an arithmetic operation is too large to be represented in the 

available number of bits. This can result in incorrect or unexpected 

results. 

4. Floating-point arithmetic: Floating-point arithmetic is used to 

represent and perform operations on non-integer numbers. It 

involves representing a number as a combination of a mantissa (or 

significand) and an exponent. 
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5. Round-off errors: Round-off errors occur in floating-point 

arithmetic due to the limited precision of the number 

representation. This can result in small inaccuracies in the 

computed results. 

6. Bitwise operations: Bitwise operations are used to manipulate 

individual bits in a number. The basic bitwise operations include 

AND, OR, XOR, and NOT. 

7. Two’s complement representation: Two’s complement 

representation is a method of representing negative numbers in 

binary. In this representation, the most significant bit is used as a 

sign bit, with 0 indicating a positive number and 1 indicating a 

negative number. 

 

Overall, computer arithmetic is a fundamental aspect of computer science 

and is used in a wide range of applications, including scientific 

computing, financial analysis, and digital signal processing. 

 

2.0 OBJECTIVES 

At the end of this unit, you should be able to 

Recognize and explain the importance of various bases in computing. 

Perform arithmetic operations with floating-point numbers. 

Describe the fixed-point number representation and its applications. 

 

3.1 THE ARITHMETIC AND LOGIC UNIT 

The arithmetic and logic unit (ALU) is that part of the computer that 

performs arithmetic and logical operations on data. All of the other 

elements of the computer system- Control unit, registers memory, I/0- are 

there mainly to bring into the ALU for it to process and then take the result 

back out. 

 

An ALU and all electronic components in the computers are based on the 

use of simple digital logic devices that can store binary digits and perform 

simple Boolean logic operations. Data are presented to the ALU in 

registers and the results of an operation are stored in registers. These 

registers are temporary storage locations within the processor that are 

connected by signal paths to the ALU. The ALU may also set flags as the 

result of an operation. For example, an overflow flag is set to 1 if the result 

of a computation exceeds the length of the register into which it is to be 

stored. The flag values are also stored in registers within the processor. 

The control unit provides signals that control the operation of the ALU 

and the movement of the data into and out of the ALU. 

 

Representing and storing numbers were the basic operations of the 

computers of earlier times. The real go came when computation, 

manipulating numbers like adding and multiplying came into the picture. 

These operations are handled by the computer’s arithmetic logic unit 
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(ALU). The ALU is the mathematical brain of a computer. The first ALU 

(Arithmetic Logic Unit) was indeed the INTEL 74181, which was 

implemented as part of the 7400 series TTL (Transistor-Transistor Logic) 

integrated circuits. It was released by Intel in 1970. 

ALU is a digital circuit that provides arithmetic and logic operations. It is 

the fundamental building block of the central processing unit of a 

computer. A modern central processing unit(CPU) has a very powerful 

ALU and it is complex in design. In addition to ALU modern CPU 

contains a control unit and a set of registers. Most of the operations are 

performed by one or more ALUs, which load data from the input 

register. Registers are a small amount of storage available to the CPU. 

These registers can be accessed very fast. The control unit tells ALU what 

operation to perform on the available data. After 

calculation/manipulation, the ALU stores the output in an output register. 

 

 

3.2 INTEGER REPRESENTATION 

In the binary number, arbitrary numbers can be represented with just the 

digits zero and the minis sign, and the period or radix point. 

-1101.01012= -13.312510 

For purposes of computer storage and processing, however, we do not 

have the benefits of minus signs and periods. Only binary digits (0 and 1) 

may be used 

to represent numbers. If we are limited to non-negative integers, the 

representation is straight forward. 

An 8-bit word can represent the numbers from 0 to 255, including 

 

00000000       = 0 

00000001       = 1 

00101001       = 41 

10000000       = 128 

11111111       = 255 

In general, if an n-bit sequence of binary digits is interpreted as an 

unsigned integer, A it value is   

𝐴 =  𝑛 − 1 
∑ 2𝑖 𝑎𝑖 

      2 =  0  

In going from the first to the second equation, we require that the least 

significant n - 1 bits do not change between the two representations. Then 

we get to next to the last equation, which is only true if all of the bits in 

positions theorem 2 are 1. Therefore, the sign-extension rule works. 

Self-Assessment Exercises 1 

 

Answer the following questions by choosing the most suitable option: 

 

1. What is the range of numbers that can be represented using 8-bit 
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unsigned binary? 

   A. 0 to 127 

   B. -128 to 127 

   C. 0 to 255 

   D. -255 to 255 

 

2. In two's complement representation, what does the most significant bit 

represent? 

   A. The magnitude of the number 

   B. The sign of the number 

   C. The decimal point location 

   D. The base of the number system 

 

3. What is the primary advantage of two's complement representation? 

   A. It uses less memory 

   B. It simplifies arithmetic operations 

   C. It allows larger numbers 

   D. It is easier to understand 

 

Fixed-point representation 

Finally, we mention that the representations discussed in this section are 

sometimes referred to as fixed points. This is because the radix point 

(binary point) is fixed and assumed to be to the right of the rightmost digit. 

The programmer can use the representation for binary fractions by scaling 

the numbers so that the binary poor implicitly positioned at some other 

location. 

Negative Number Representation 

Sign Magnitude 

Sign magnitude is a very simple representation of negative numbers. In 

sign-magnitude, the first bit is dedicated to representing the sign and 

hence it is called the sign bit. 

The sign bit ‘1’ represents a negative sign. 

The sign bit ‘0’ represents a positive sign. 

In the sign-magnitude representation of n-bit number, the first bit will 

represent the sign, and the rest n-1 bits represent the magnitude of the 

number. 

For example, 

+25 = 011001 

Where 11001 = 25 

And 0 for ‘+’ 

-25 = 111001 

Where 11001 = 25 

And 1 for ‘-‘. 

Range of number represented by sign magnitude method = -(2n-1-1) 

to +(2n-1-1) (for n bit number) 

But there is one problem in sign-magnitude and that is we have two 
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representations of 0 

+0 = 000000 

– 0 = 100000 

2’s complement method 

To represent a negative number in this form, first we need to take the 1’s 

complement of the number represented in simple positive binary form and 

then add 1 to it. 

For example: 

(-8)10 = (1000)2 

1’s complement of 1000 = 0111 

Adding 1 to it, 0111 + 1 = 1000 

So, (-8)10 = (1000)2 

Please don’t get confused with (8)10 =1000 and (-8)10=1000 as with 4 bits, 

we can’t represent a positive number more than 7. So, 1000 is representing 

-8 only. 

Range of number represented by 2’s complement = (-2n-1 to 2n-1 – 1) 

  Floating point representation of numbers 

32-bit representation floating point numbers IEEE standard 

Normalization 

• Floating point numbers are usually normalized 

• The exponent is adjusted so that the leading bit (MSB) of the 

mantissa is 1 

• Since it is always 1 there is no need to store it 

• Scientific notation where numbers are normalized to give a single 

digit before the decimal point like in a decimal system e.g. 3.123 x 103 

Some insight into two complement addition and subtraction can be gained 

by looking at a geometric depiction. The circle in the upper half of each 

part of the figure is formed by selecting the appropriate segment of the 

number line and joining the endpoints. Note that when the numbers are 

laid out on a circle, the twos complement of any number are horizontally 

opposite that number (indicated by dashed horizontal lines). Starting at 

any number on the circle, we can add positive k (or subtract negative k), 

to that number by moving k positions clockwise, and we can subtract 

positive k (of add negative k) from that number by moving k positions 

counterclockwise. If an arithmetic operation results in traversal of the 

point where the endpoints are joined, an incorrect answer is given 

(overflow). 

The central element is a binary adder, which presents two numbers for 

addition and produces a sum and an overflow indication. The binary adder 

treats the two numbers as unsigned integers. In addition, the two numbers 

are presented to the adder from two registers, designated in this case as A 

and B registers. The result may be stored in one of these registers or a 

third. The overflow indication is stored in a 1-bit overflow flag (0 = no 

overflow; I = overflow). For subtraction, the 

4.0 CONCLUSION 

Numbers are represented in binary form and the algorithms used for basic 
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arithmetic operators are add, subtract, multiply, and divide 

5.0 SUMMARY 

- An ALU and all electronic components in the digital logic devices 

that store binary digits and perform simple Boolean logic operations 

- Overflow rule occurs when two numbers positive or negative 

numbers are added and the result of the addition has the opposite sign. 

- Subtraction flow is to subtract one number (subtracted) from 

another (minuend) take the two compliments (negation) of the subtrahend 

and hold it to the minuend. 

Floating point numbers are expressed as a number (significant) multiplied 

by a constant (base) raised to some integer power (exponent). It can be 

used to represent very large and very small numbers. 

 

7.1 Possible Answers to Self-Assessment Exercises 

 

Self-Assessment Exercise 1 

1. C 

2. B 

3. B 

 

6.0 TUTOR- MARKED ASSIGNMENT 

1. What is a sign-extension rule for two

 compliment numbers? 

2. Find the following differences using two complement arithmetic: 

a. 1111011 b. 10101110 c. 111110010111 

-100100 -111-1-1 -111010010101 

7.0 Reference and further reading 

Null, L. (2023). Essentials of Computer Organization and Architecture. 

Jones & Bartlett Learning. 

Englander, I., & Wong, W. (2021). The architecture of computer 

hardware, systems software, and networking: An information technology 

approach. John Wiley & Sons. 

Swartzlander, E. editor computer Arithimetic, volumes I and II. Los 

Alamitiss, CA IEEE Computer society press, 1990. 
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UNIT 2  CONTROL FLOW DESIGN/OPERATION 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Micro- Operation 

3.2 Control of the Processor 

3.3 Hard-wired implementation 

3.4 Micro-programmed control 

4.0 Conclusion 

5.0 Summary 

6.0 T. M.A 

7.0 Reference and further reading 

1.0  Introduction 

The execution of an instruction involves the execution of a sequence of 

sub-steps, generally called cycles. For example, an execution may consist 

of fetch, indirect, execute, and interrupt cycles. Each cycle is in turn made 

up is a sequence of more fundamental operations called micro-operations. 

A single micro-operation generally involves transfer between registers a 

register and an external bus, or a simple ALU operation. 

 

2.0 At the end of this unit, you should be able to 

- Understand that each cycle is in turn made up of a sequence of 

more fundamental operations called micro-operations. 

- Identify hardwired implementation 

- Explain micro-programmed control 

 

3.1 MICRO OPERATIONS 

The prefix micro refers to the fact that each step is very simple and 

accomplishes very little. To design a control unit each of the smaller 

cycles involves a series of steps each of which involves the processor 

registers. We refer to these steps as micro-operations. Micro operations 

are the functional, or atomic operations of a processor. 

Three. Now, we turn to the question of how these functions are performed 

or, more specifically, how the various elements of the processor are 

controlled to provide these functions. Thus, we turn to a discussion of the 

control unit, which controls the operation of the processor. 

We have seen that the operation of a computer, in executing a program, 

consists of a sequence of instruction cycles, with one machine instruction 

per cycle. Of course, we must remember that this sequence of instruction 

cycles is not necessarily the same as the written sequence of instructions 

that make up the program, because of the existence of branching 

instructions. What we are referring to here is the execution time sequence 

of instructions. 

We have further seen that each instruction cycle is made up of several 

smaller units. One subdivision that we found convenient is fetch, indirect, 
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execute, and interrupt, with only fetch and execute cycles always 

occurring. 

To design a control unit, however, we need to break down the description 

further. In our discussion of pipelining in Chapter 12, we began to see that 

further decomposition is possible. We will see that each of the smaller 

cycles involves 

a series of steps, each of which involves the processor registers. We will 

refer to these steps as micro-operations. The prefix micro refers to the fact 

that each step is very simple and accomplishes very little. Figure 15.1 

depicts the relationship among the various concepts we have been 

discussing. To summarize, the execution of a program consists of the 

sequential execution of instructions. Each instruction is executed during 

an instruction cycle made up of shorter subcycles (e.g., fetch, indirect, 

execute, interrupt). The execution of each subcycle involves one or more 

shorter operations, that is, micro- operations. 

Micro-operations are the functional, or atomic, operations of a processor. 

In this section, we will. examine micro-operations to gain an 

understanding of how the events of any instruction cycle can be described 

as a sequence of such m' operations. A simple example will be used. In 

the remainder of this chapter. 

-then show how the concept of micro-operations serves as a guide to the 

design control unit. Figure 7 displayed the contituent element of a 

program execution. 

 

 

 
 

 

Figure 7. Contituent element of a program execution 

'We begin by looking at the fetch cycle, which occurs at the beginning of 

each instruction cycle and causes an instruction to be fetched from 

memory.  

Memory address register (MAR): Is connected to the address lines of the 

bus. It specifies the address in memory for a read or write operation. 
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Memory buffer register (MBR): Is connected to the data lines of the 

system -- 

_ It contains the value to be stored in memory or the last value read from 

melr 

_ Program counter (PC): Holds the address of the next instruction to be 

fetched  

Instruction register (IR): Holds the last instruction fetched. 

Let us look at the sequence of events for the fetch cycle from the point of 

view of its effect on the processor registers. An example appears in Figure 

5 at the beginning of the fetch cycle, the address of the next instruction to 

be executed is in the program counter (PC); in this case, the address is 

1100100. The first steto move that addresses to the memory address 

register 

(MAR) because this is only registered and connected to the address lines 

of the system bus. The second step bring in the instruction. The desired 

address (in the MAR) is placed on the adder. We have seen that the 

operation of a computer, in executing a program, consists of a sequence 

of instruction cycles, with one machine instruction per cycle. Of course, 

we must remember that this sequence of instruction cycles is not 

necessarily the same as the written sequence of instructions that make up 

the program, because of the existence of branching instructions. What we 

are referring to here is the execution time sequence of instructions. 

We have further seen that each instruction cycle is made up of several 

smaller units. One subdivision that we found convenient is fetch, indirect, 

execute, and interrupt, with only fetch and execute cycles always 

occurring. 

To design a control unit, however, we need to break down the description 

further. We will see that each of the smaller cycles involves a series of 

steps, each of which involves the processor registers. We will refer to 

these steps as micro-operations. The prefix micro refers to the fact that 

each step is very simple and accomplishes very little. Figure 15.1 depicts 

the relationship among the various concepts we have been discussing. To 

summarize, the execution of a program consists of the sequential 

execution of instructions. Each instruction is executed during an 

instruction cycle made up of shorter subcycles (e.g., fetch, indirect, 

execute, interrupt). The execution of each subcycle involves one or more 

shorter operations, that is, micro-operations. 

Micro-operations are the functional, or atomic, operations of a processor. 

bus, the control unit issues a READ command on the control bus, and the 

result appears on the data bus and is copied into the memory buffer 

register (MBR). We also need to increment the PC by the instruction 

length to get ready for the next instruction. Because these two actions 

(read word from memory, increment PC) do not interfere with each other, 

we can do them simultaneously to save time. The third step is to move the 

contents of the MBR to the instruction register (IR). This frees up the 

MBR for use during a possible indirect cycle. 
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Thus, the simple fetch cycle consists of three steps and four micro-

operations. Each micro-operation involves the movement of data into or 

out of a register. So long as these movements do not interfere with one 

another, several of them can take place during one step, saving time. 

Symbolically, we can write this sequence of events as follows: 

t1: MAR E- (PC) t2: MBR <-- Memory PC <- (PC) + I t3: IR <-- (MBR) 

where I is the instruction length. We need to make several comments 

about this sequence. We assume that a clock is available for timing 

purposes and that it emits regularly spaced clock pulses. Each clock pulse 

defines a time unit. Thus, all time units are of equal duration. Each micro-

operation can be performed within the time of a single time unit. The 

notation (ti, t2, t3) represents successive time units. In words, we have 

I First-time unit: Move contents of PC to MAR. 

Second-time unit: Move contents of the memory location specified by 

MAR to MBR. Increment by I the contents of the PC. 

Third-time unit: Move contents of MBR to IR. 

Note that the second and third micro-operations both take place during 

the second time unit. The third micro-operation could have been grouped 

with the fourth without affecting the fetch operation: 

t1: MAR <- (PC) t2: MBR <- Memory t3: PC E- (PC) + I IR <- (MBR) 

The groupings of micro-operations must follow two simple rules: 

The proper sequence of events must be followed. Thus (MAR - (PC)) 

must precede (MBR - Memory) because the memory read operation 

makes use of the address in the MAR. 

Conflicts must be avoided. One should not attempt to read to and write 

from the same register in a one-time unit, because the results would be 

unpredictable. For example, the micro-operations (MBR ¢-- Memory) 

and (IR <- MBR) should not occur during the same time unit. 

A final point worth noting is that one of the micro-operations involves an 

addition. To avoid duplication of circuitry, this addition could be 

performed by the ALU. The use of the ALU may involve additional 

micro-operations, depending on the functionality of the ALU and the 

organization of the processor. Whereas micro-operations are ignored in 

that figure, this discussion shows the micro-operations needed to perform 

the sub-cycles of the instruction cycle. 

Once an instruction is fetched, the next step is to fetch source operands. 

Continuing our simple example, let us assume a one-address instruction 

format, with direct and indirect addressing allowed. If the instruction 

specifies an indirect address, then an indirect cycle must precede the 

execute cycle.  

𝑡1: 𝑀𝐴𝑅 < − (𝐼𝑅(𝐴𝑑𝑑𝑟𝑒𝑠𝑠))  

𝑡2: 𝑀𝐵𝑅 𝐹 −  𝑀𝑒𝑚𝑜𝑟𝑦 

𝑡3: 𝐼𝑅(𝐴𝑑𝑑𝑟𝑒𝑠𝑠) 𝐹 −  (𝑀𝐵𝑅(𝐴𝑑𝑑𝑟𝑒𝑠𝑠)) 

The address field of the instruction is transferred to the MAR. This is then 

used to fetch the address of the operand. Finally, the address field of the 

IR is updated from the MBR, so that it now contains a direct rather than 
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an indirect address. 

The IR is now in the same state as if indirect addressing had not been used 

and it is ready for the execution cycle. We skip that cycle for a moment, 

to consider t interrupt cycle. 

After the execute cycle, a test is made to determine whether any-:-_abled 

interrupts have occurred. If so, the interrupt cycle occurs. The nature of 

the cycle varies greatly from one machine to another. We present a very 

simple sequeof events, as illustrated in Figure 12.8. We have 

t1: MBR E- (PC) 

t2: MAR F- Save Address PC F- Routine Address  

t3: Memory E- (MBR) 

In the first step, the contents of the PC are transferred to the MBR, so that 

u- can be saved for return from the interrupt. Then the MAR is loaded 

with the add- .at which the contents of the PC are to be saved, and the PC 

is loaded with the add to the MAR and PC, respectively. In any case, once 

this is done, the final step is to store the MBR, which contains the old 

value of the PC, in memory. The processor is now ready to begin the next 

instruction cycle. 

The fetch, indirect, and interrupt cycles are simple and predictable. Each 

involves a small, fixed sequence of micro-operations and, in each case, 

the same micro-operations are repeated each time around. 

This is not true of the execution cycle. Because of the variety of opcodes, 

there are several different sequences of micro-operations that can occur. 

Let us consider several hypothetical examples. 

First, consider an add instruction: 

ADD R1, X 

which adds the contents of location X to register R1. The following 

sequence of micro-operations might occur: 

We begin with the IR containing the ADD instruction. In the first step, 

the address portion of the IR is loaded into the MAR. Then the referenced 

memory 

location is read. Finally, the contents of RI and MBR are added by the 

ALLT. 

Again. This is a simplified example. Additional micro-operations may be 

required to extract the register reference from the IR and perhaps to stage 

the ALt inputs or outputs in some intermediate registers. 

Let us look at two more complex examples. A common instruction is 

increment and skip if zero: 

The content of location X is incremented by l. If the result is 0, the next 

instruction is skipped. A possible sequence of micro-operations is 

ti: MAR <-- (IR(address)) t2: MBR- F- Memory 

tz : MBR <-- (MBR) + 1 

tu: Memory <- (MBR) 

If ( (MBR) = 0) then (PC F - (PC) + I) 

The new feature introduced here is the conditional action. The PC is 

incremented if (MBR) = 0. This test and action can be implemented as 



31 

IFT 212        COMPUTER ARCHITECTURE AND ORGANIZATION 

 

one micro-operation. Note also that this micro-operation can be 

performed during the same time unit during which the updated value in 

MBR is stored back in memory. 

It is worth pondering the minimal nature of the control unit. The control 

unit is the engine that runs the entire computer. It does this based only on 

knowing the instructions to be executed and the nature of the results of 

arithmetic and logical operations (e.g., positive, overflow, etc.). It never 

gets to see the data being processed or the actual results produced. It 

controls everything with a few control signals to points within the 

processor and a few control signals to the system bus. 

Self-Assessment Exercises 1 

 

Fill in the gaps in the sentences below with the most suitable words: 

 

1. ________ are the functional, or atomic, operations of a processor. 

 

2. The fetch cycle consists of ________ steps and ________ micro-

operations. 

 

3. A ________ control unit uses fixed logic circuits while a ________ 

control unit stores control signals in memory. 

 

INTERNAL PROCESSOR ORGANIZATION 

 

Figure 8 indicates the use of a variety of data paths. The complexity of 

this type of organization should be clear. Using an internal processor bus, 

Figure 8 can be rearranged. A single internal bus connects the ALU and 

all processor registers. 

CPU with Internal Bus. 
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Figure 8. CPU with internal bus 

Gates and control signals are provided for the movement of data onto and 

off the bus from each register. Additional control signals control data 

transfer to and from the system (external) bus and the operation of the 

ALU. 

Two new registers, labeled Y and Z, have been added to the organization. 

These are needed for the proper operation of the ALU. When an operation 

involving two operands is performed, one can be obtained from the 

internal bus, but the other must be obtained from another source. The AC 

could be used for this purpose, but this limits the flexibility of the system 

and would not work with a processor with multiple general-purpose 

registers. Register Y provides temporary storage for the other input. The 

ALU is a combinatorial circuit with no internal storage. Thus, when 

control signals activate an ALU function, the input to the ALU is 

transformed into the output. Thus, the output of the ALU cannot be 

directly connected to the bus, because this output would feed back to the 

input. Register Z provides temporary output storage. With this 

arrangement, an operation to add a value from memory to the AC would 
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have the following steps: 

t1: MAR <- (IR(address))  

t2: MBR E- Memory  

t3: Y <-(MBR)  

t4: Z f- (AC) + (Y)  

ts: AC F- (Z) 

Other organizations are possible, but, in general, some sort of internal bus 

or set of internal buses is used. The use of common data paths simplifies 

the interconnection layout and the control of the processor. Another 

practical reason for the use of an internal bus is to save space. 

To illustrate some of the concepts introduced thus far in this chapter, let 

us consider the Intel 8085. Its organization is shown in Figure 9. Several 

key components that may not be self-explanatory are: 

Incrementer/decrementer address latch: Logic that can add 1 to or 

subtract 1 from the contents of the stack pointer or program counter. This 

saves time by avoiding the use of the ALU for this purpose. 

Interrupt control: This module handles multiple levels of interrupt 

signals. 

Serial I/O control: This module interfaces to devices that communicate 

1 bit at a time. These signals are the interface between the 8085 processor 

and the rest of the system (Figure 10). 

 

 
 

 Figure 9. Intel 8085 CPU Block Diagram 
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The control unit is identified as having two components labeled (1) in; 

decoder and machine cycle encoding and (2) in timing and control.  The 

timing of processor operations is synchronized by the clock trolled by the 

control unit with control signals. Each instruction cycle i, into from one 

to five machine cycles; each  machine cycle is in turn diN from three to 

five states. Each state lasts one clock cycle. During a state. The son 

performs one or a set of simultaneous micro-operations as determined 

control signals. 

The number of machine cycles is fixed for a given instruction but one 

instruction to another. Machine cycles are defined to be equivalent cesses. 

Thus, the number of machine cycles for an instruction depends on 

a bar of times the processor must communicate with external devices. For 

e an instruction consists of two 8-bit portions, and then two machine, 

cycles fetch the instruction. If that instruction involves a 1-byte memory 

or 1/0 then a third machine cycle is required for execution. 

 

 

 
 

 

Figure 10. Inter 8085 pin configuration 

Figure 11 gives an example of 8085 timing, showing the value of external 

control signals. Of course, at the same time, the control unit generates 
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internal control signals that control internal data transfers. The diagram 

shows the instruction cycle for an OUT instruction. Three machine cycles 

(Ml, M2, M3) are needed. During the first, the OUT instruction is fetched. 

The second machine cycle fetches the second half of the instruction, 

which contains the number of the 1/O device selected for output. During 

the third cycle, the contents of the AC are written out to the selected 

device over the data bus. 

The Address Latch Enabled (ALE) pulse signals the start of each machine 

cycle from the control unit. The ALE pulse alerts external circuits. During 

timing state T1 of machine cycle Mr, the control unit sets the IO/M signal 

to indicate that this is a memory operation. Also, the control unit causes 

the contents of the PC to be placed on the 

 

 
 

Figure 11. The timing diagram for inter 8085 out instruction 

The timing diagram for inter 8085 out instruction addressed memory 

module places the contents of the addressed memory vocation on the 

address/data bus. The control unit sets the Read Control (RD) signal to 

indicate a read, but it waits until T3 to copy the data from the bus. This 

gives the memory module time to put the data on the bus and for the signal 

levels to stabilize. The final state, T4, is a bus idle state during which the 

processor decodes the instruction. The remaining machine cycles proceed 

similarly. 

 

Finally, consider a subroutine call instruction. As an example, consider a 

branch and-save-address instruction: 
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BSA X 

The address of the instruction that follows the BSA instruction is saved in 

location X, and execution continues at location X + I. The saved address 

will later be used for return. This is a straightforward technique for 

providing subroutine calls. The following micro-operations suffice: 

t,: MAR E- (IR(address)) MBR ~ (PC) 

tz: PC <-- (IR(address)) Memory <-- MBR)  

t3: PC <- (PC) + I 

The address in the PC at the start of the instruction is the address of the 

next instruction in sequence. This is saved at the address designated in the 

IR. The later address is also incremented to provide the address of the 

instruction for the next - instruction cycle. 

We have seen that each phase of the instruction cycle can be decomposed 

into a sequence of elementary micro-operations. In our example, there is 

one sequence eac= for the fetch, indirect, and interrupt cycles, and, for the 

execute cycle, there is one sequence of micro-operations for each opcode. 

To complete the picture, we need to tie sequences of micro-operations 

together, and this is done in Figure 15.3. We assume a new 2-bit register 

called the instruction cycle code (ICC). The ICC designates the state of 

the processor in terms of which portion of the cycle it is in: 

00: Fetch 01: Indirect 

10: Execute 11: 

Interrupt 

At the end of each of the four cycles, the ICC is set appropriately. The 

indirect cycle is always followed by the execute cycle. The interrupt cycle 

is always followed by the fetch cycle. For both the fetch and execute 

cycles, the next cycle depends on the state of the system. 

Of course, this is a simplified example. The flowchart for an actual 

processor would be more complex. In any case, we have reached the point 

in our discussion in which the operation of the processor is defined as the 

performance of a sequence of micro-operations. We can now consider 

how the control unit causes this sequence to occur of tbp r of the interrupt-

processing routine. These two actions may each be single micro-

operation. However, because most processors provide multiple tyr and/or 

levels of interrupts, it may take one or more additional micro-operations 

to obtain the Save Address and the Routine Address before they can be 

transfer the events of any instruction cycle can be described as a sequence 

of such micro operations. A simple example will be used. In the remainder 

of this chapter, we then show how the concept of micro- operations serves 

as a guide to the design of the control unit. 

THE FETCH CYCLE 

We begin by looking at the fetch cycle, which occurs at the beginning of 

each instruction cycle and causes an instruction to be fetched from 

memory. Four registers are involved: 

• Memory address register (MAR): Is connected to the address 

lines of the system bus. It specifies the address in memory for a read or 
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write operation. 

• Memory buffer register (MBR): Is connected to the data lines of 

the system bus. It contains the value to be stored in memory or the last 

value read from memory. 

• Program counter (PC): Holds the address of the next instruction 

to be fetched. 

• Instruction register (IR): Holds the last instruction fetched. 

Let us look at the sequence of events for the fetch cycle from the point of 

view of its effect on the processor registers. At the beginning of the fetch 

cycle, the address of the next instruction to be executed is in the program 

counter (PC); in this case, the address is 1100100. The first step is to move 

that address to the memory address register (MAR) because this is the 

only register connected to the address lines of the system bus. The second 

step is to bring in the instruction. The desired address (in the MAR) is 

placed on the bus, the control unit issues a READ command on the control 

bus, and the result appears on the data bus and is copied into the memory 

buffer register (MBR). We also need to increment the PC by the 

instruction length to get ready for the next instruction. Because these two 

actions (read word from memory, increment PC) do not interfere with 

each other, we can do them simultaneously to save time. The third step is 

to move the contents of the MBR to the instruction register (IR). This 

frees up the MBR for use during a possible indirect cycle. 

Thus, the simple fetch cycle consists of three steps and four micro- 

operations. Each micro-operation involves the movement of data into or 

out of a register. So long as these movements do not interfere with one 

another, several of them can take place during one step, saving time. 

Symbolically, we can write this sequence of events as follows: 

where I is the instruction length. We need to make several comments 

about this sequence. We assume that a clock is available for timing 

purposes and that it emits regularly spaced clock pulses. Each clock pulse 

defines a time unit. Thus, all time units are of equal duration. Each micro-

operation can be performed within the time of a single time unit. The 

notation (t1, t2, t3) represents successive time units. In words, we have 

First-time unit: Move contents of PC to MAR. 

• Second-time unit: Move contents of the memory location 

specified by MAR to MBR. Increment by I the contents of the PC. 

• Third-time unit: Move contents of MBR to IR. 

Note that the second and third micro-operations both take place during 

the second time unit. The third micro-operation could have been grouped 

with the fourth without affecting the fetch operation: 

The groupings of micro-operations must follow two simple rules: 

The proper sequence of events must be followed. Thus (MAR - (PC)) 

must precede (MBR - Memory) because the memory read operation 

makes use of the address in the MAR. Conflicts must be avoided. One 

should not attempt to read to and write from the same register in a one-

time unit, because the results would be unpredictable. For example, the 
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micro-operations (MBR Memory) and (IR E- MBR) should not occur 

during the same time unit. 

A final point worth noting is that one of the micro-operations involves an 

addition. To avoid duplication of circuitry, this addition could be 

performed by the ALU. The use of the ALU may involve additional 

micro-operations, depending on the functionality of the ALU and the 

organization of the processor. 

Whereas micro-operations are ignored in that figure, this discussion 

shows the micro-operations needed to perform the subcycles of the 

instruction cycle. 

Once an instruction is fetched, the next step is to fetch source operands. 

Continuing our simple example, let us assume a one-address instruction 

format, with direct and indirect addressing allowed. If the instruction 

specifies an indirect address, then an indirect cycle must precede the 

execute cycle. 

The address field of the instruction is transferred to the MAR. This is then 

used to fetch the address of the operand. Finally, the address field of the 

IR is updated from the MBR, so that it now contains a direct rather than 

an indirect address. 

The IR is now in the same state as if indirect addressing had not been 

used, and it is ready for the execute cycle. We skip that cycle for a 

moment, to consider the interrupt cycle. 

After the execute cycle, a test is made to determine whether any enabled 

interrupts have occurred. If so, the interrupt cycle occurs. The nature of 

this cycle varies greatly from one machine to another. We have 

tl: MBR <-- (PC) 

t2: MAR <-- Save Address PC <-- Routine ddress  

t3: Memory <-- (MBR) 

In the first step, the contents of the PC are transferred to the MBR, so that 

they can be saved for return from the interrupt. Then the MAR is loaded 

with the address at which the contents of the PC are to be saved, and the 

PC is loaded with the address of the start of the interrupt-processing 

routine. These two actions may each be a single micro-operation. 

However, because most processors provide multiple types and/or levels 

of interrupts, it may take one or more additional micro- operations to 

obtain the Save Address and the Routine Address before they can be 

transferred to the MAR and PC, respectively. In any case, once this is 

done, the final step is to store the MBR, which contains the old value of 

the PC, in memory. The processor is now ready to begin the next 

instruction cycle. 

The fetch, indirect, and interrupt cycles are simple and predictable. Each 

involves a small, fixed sequence of micro-operations and, in each case, 

the same micro-operations are repeated each time around. 

This is not true of the execute cycle. Because of the variety of opcodes, 

there are various sequences of micro-operations that can occur. Let us 

consider several hypothetical examples. 
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First, consider an add instruction: 

which adds the contents of location X to register R1. The following 

sequence of micro-operations might occur: 

t1: MAR <-- (IR(address))  

t2: MBR <-- Memory 

t3: R1 ~- (R1) + (MBR) 

We begin with the IR containing the ADD instruction. In the first step, 

the address portion of the IR is loaded into the MAR. Then the referenced 

memory location is read. Finally, the contents of R1 and MBR are added 

by the ALU. Again, this is a simplified example. Additional micro-

operations may be required to extract the register reference from the IR 

and perhaps to stage the ALU inputs or outputs in some intermediate 

registers. 

Let us look at two more complex examples. A common instruction is 

increment and skip if zero: 

The content of location X is incremented by 1. If the result is 0, the next 

instruction is skipped. A possible sequence of micro-operations is 

The new feature introduced here is the conditional action. The PC is 

incremented if (MBR) = 0. This test and action can be implemented as 

one micro-operation. Note also that this micro-operation can be 

performed during the same time unit during which the updated value in 

MBR is stored back in memory. 

 

Finally, consider a subroutine call instruction. As an example, consider a 

branch and-save-address instruction: 

BSA X 

The address of the instruction that follows the BSA instruction is saved in 

location X, and execution continues at location X + I. The saved address 

will later be used for return. This is a straightforward technique for 

providing subroutine calls. The following micro-operations suffice: 

t 1 : MAR <-- (IR(address)) MBR <-- (PC) 

t z: PC ~  (IR(address)) Memory - (MBR) 

t 3 : PC ~_ (PC) + I 

The address in the PC at the start of the instruction is the address of the 

next instruction in sequence. This is saved at the address designated in the 

IR. The latter address is also incremented to provide the address of the 

instruction for the next instruction cycle. 

 

Self-Assessment Exercises 1 

 

Fill in the gaps in the sentences below with the most suitable words: 

 

1. ________ are the functional, or atomic, operations of a processor. 

 

2. The fetch cycle consists of ________ steps and ________ micro-

operations. 
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3. A ________ control unit uses fixed logic circuits while a ________ 

control unit stores control signals in memory. 

 

THE INSTRUCTION CYCLE 

We have seen that each phase of the instruction cycle can be decomposed 

into a sequence of elementary micro-operations. In our example, there is 

one sequence each for the fetch, indirect, and interrupt cycles, and, for the 

execute cycle, there is one sequence of micro-operations for each opcode. 

We assume a new 2-bit register called the instruction cycle code (ICC). 

The ICC designates the state of the processor in terms of which portion 

of the cycle it is in: 

00: Fetch 

01: Indirect 

10: Execute 

11: Interrupt 

At the end of each of the four cycles, the ICC is set appropriately. The 

indirect cycle is always followed by the execute cycle. The interrupt cycle 

is always followed by the fetch cycle. For both the fetch and execute 

cycles, the next cycle depends on the state of the system. 

Of course, this is a simplified example. The flowchart for an actual 

processor would be more complex. In any case, we have reached the point 

in our discussion in which the operation of the processor is defined as the 

performance of a sequence of micro-operations. We can now consider 

how the control unit causes this sequence to occur. 

 

3.2 CONTROL OF THE PROCESSOR 

As a result of our analysis in the preceding section, we have decomposed 

the behavior or functioning of the processor into elementary operations, 

called micro-operations. By reducing the operation of the processor to its 

most fundamental level, we can define exactly what it is that the control 

unit must cause to happen. Thus, we can define the functional 

requirements for the control unit: those functions that the control unit 

must perform. A definition of these functional requirements is the basis 

for the design and implementation of the control unit. 

With the information at hand, the following three-step process leads to a 

characterization of the control unit: 

1. Define the basic elements of the processor. 

2. Describe the micro-operations that the processor performs. 

3.  Determine the functions that the control unit must perform 

to cause the micro-operations to be performed. 

We have already performed steps 1 and 2. Let us summarize the results. 

First, the basic functional elements of the processor are the following: 

• ALU 

• Registers 

• Internal data paths External data paths 
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• Control unit 

Some thought should convince you that this is i complete list. The ALU 

is the functional essence of the computer. Registers are used to store data 

internally on the processor. Some registers contain status information 

needed to manage instruction sequencing (e.g., a program status word). 

Others contain data that go to or comes from the ALU, memory, and I/O 

modules. Internal data paths are used to move data between registers and 

between registers and ALU. External data paths link registers to memory 

and 1/O modules, often utilizing a system bus. The control unit causes 

operations to happen within the processor. 

The execution of a program consists of operations involving these 

processor elements. As we have seen, these operations consist of a 

sequence of micro-operations. micro- operations fall into one of the 

following categories: 

Transfer data from one register to another. 

Transfer data from a register to an external interface (e.g., system bus). 

Transfer data from an external interface to a register. 

Perform an arithmetic or logic operation, using registers for input and 

output. 

All of the micro-operations needed to perform one instruction cycle, 

including all of the micro-operations to execute every instruction in the 

instruction set, fall into one of these categories. 

We can now be somewhat more explicit about how the control unit 

functions. The control unit performs two basic tasks: 

➢ Sequencing: The control unit causes the processor to step through 

a series of micro-operations in the proper sequence, based on the program 

being executed. 

➢ Execution: The control unit causes each micro-operation to be 

performed. 

The preceding is a functional description of what the control unit does. 

The key to how the control unit operates is the use of control signals. 

Controls Signals 

We have defined the elements that make up the processor (ALU, registers, 

data paths) and the micro-operations that are performed. For the control 

unit to perform its function, it must have inputs that allow it to determine 

the state of the system and outputs that allow it to control the behavior of 

the system. These are the external specifications of the control unit. 

Internally, the control unit must have the logic required to perform its 

sequencing and execution functions. The remainder of this section is 

concerned with the interaction between the control unit and the other 

elements of the processor. 

The inputs are 

✓ Clock: This is how the control unit "keeps time." The control unit 

causes one micro-operation (or a set of simultaneous micro-operations) to 

be performed for each clock pulse. This is sometimes referred to as the 

processor cycle time, or the clock cycle time. 
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✓ Instruction registers: The opcode and addressing mode of the 

current instruction are used to determine which micro-operations to 

perform during the execute cycle. 

✓ Flags: These are needed by the control unit to determine the status 

of the processor and the outcome of previous ALU operations. For 

example, for the increment-and-skip-if-zero (ISZ) instruction, the control 

unit will increase the PC if the zero flag is set. 

Control signals from the control bus: The control bus portion of the 

system bus provides signals to the control unit. 

The outputs are as follows: 

✓ Control signals within the processor: There are two types: those 

that cause data to be moved from one register to another, and those that 

activate specific ALU functions. 

- Control signals to control bus: These are also of two types: control 

signals to memory, and control signals to the I/O modules. 

Three types of control signals are used: those that activate an ALU 

function, those that activate a data path, and those that are signals on the 

external system bus or other external interface. All of these signals are 

ultimately applied directly as binary inputs to individual logic gates. 

Let us consider again the fetch cycle to see how the control unit maintains 

control. The control unit keeps track of where it is in the instruction cycle. 

At a given point, it knows that the fetch cycle is to be performed next. The 

first step is to transfer the contents of the PC to the MAR. The control unit 

does this by activating the control signal that opens the gates between the 

bits of the PC and the bits of the MAR. The next step is to read a word 

from memory into the MBR and increment the PC. The control unit does 

this by sending the following control signals simultaneously: 

A control signal that opens gates, allowing the contents of the MAR onto 

the address bus A memory read control signal on the control bus 

A control signal opens the gates, allowing the contents of the data bus to 

be stored in the MBR 

Control signals to logic that add 1 to the contents of the PC and store the 

result back to the PC. 

Following this, the control unit sends a control signal that opens gates 

between the MBR and the IR. 

This completes the fetch cycle except for one thing: The control unit must 

decide whether to perform an indirect cycle or an execute cycle next. To 

decide this, it examines the IR to see if an indirect memory reference is 

made. 

The indirect and interrupt cycles work similarly. For the execute cycle, 

the control unit begins by examining the opcode and based on that, 

decides which sequence of micro-operations to perform for the execute 

cycle. 

To illustrate the functioning of the control unit, let us examine a simple 

example. Figure 

12 illustrates the example. This is a simple processor with a single 
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accumulator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Data paths and control signals 

(AC). The data paths between elements are indicated. The control paths 

for signals emanating from the control unit are not shown, but the 

terminations of control signals are labeled Ci and indicated by a circle. 

The control unit receives inputs from the clock, the instruction registers, 

and flags. With each dock cycle, the control unit reads all of its inputs and 

emits a set of control signals. Control signals go to three separate 

destinations: 

 

Data paths: The control unit controls the internal flow of data. For 

example, on instruction fetch, the contents of the memory buffer register 

are transferred to the instruction register. For each path to be controlled, 

there is a switch (indicated by a circle in the figure). A control signal from 

the control unit temporarily opens the gate to let data pass. 

 

ALU: The control unit controls the operation of the ALU by a set of 

control signals. These signals activate various logic circuits and gates 

within the ALU. 

System bus: The control unit sends control signals out onto the control 

lines of the system bus (e.g., memory READ). 

The control unit must maintain knowledge of where it is in the instruction 

cycle. Using this knowledge, and by reading all of its inputs, the control 

unit emits a sequence of control signals that cause micro-operations to 

occur. It uses the clock pulses to time the sequence of events, allowing 

time between events for signal levels to stabilize. For simplicity, the data 

and control paths for incrementing the PC and for loading the fixed 

addresses into the PC and MAR are not shown. 

t is worth pondering the minimal nature of the control unit. The control 
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unit is the engine that runs the entire computer. It does this based only on 

knowing the instructions to be executed and the nature of the results of 

arithmetic and logical operations (e.g., positive, overflow, etc.). It never 

gets to specify the data being processed or the actual results produced. It 

controls everything with a few control signals to points within the 

processor and a few control signals to the system bus. 

 

Figure 12 indicates the use of a variety of data paths. The complexity of 

this type of organization should be clear. Gates and control signals are 

provided for the movement of data onto and off the bus from each register. 

Additional control signals control data transfer to and from the system 

(external) bus and the operation of the ALU. 

 

Two new registers, labeled Y and Z, have been added to the organization. 

These are needed for the proper operation of the ALU. When an operation 

involving two operands is performed, one can be obtained from the 

internal bus, but the other must be obtained from another source. The AC 

could be used for this purpose, but this limits the flexibility of the system 

and would not work with a processor with multiple general-purpose 

registers. Register Y provides temporary storage for the other input. The 

ALU is a combinatorial circuit with no internal storage. Thus, when 

control signals activate an ALU function, the input to the ALU is 

transformed into the output. Thus, the output of the ALU cannot be 

directly connected to the bus, because this 

 

the output would feed back to the input. Register Z provides temporary 

output storage. With this arrangement, an operation to add a value from 

memory to the AC would have the following steps: 

 

t1: MAR  (IR (address) ) 

t2: MBR  Memory 

t3: Y  (MBR) 

t4: Z  (AC) + (Y) 

t5: AC  (Z) 

Other organizations are possible, but, in general, some sort of internal bus 

or set of internal buses is used. The use of common data paths simplifies 

the interconnection layout and the control of the processor. Another 

practical reason for the use of an internal bus is to save space. 

 

To illustrate some of the concepts introduced thus far in this unit, let us 

consider the Intel 8085. Its organization is shown in Figure 11. Several 

key components that may not be self-explanatory are: 

❖ Incremental decrementer address latch: Logic that can add 1 to 

or subtract 1 from the contents of the stack pointer or program counter. 

This saves time by avoiding the use of the ALU for this purpose. 

❖ Interrupt control: This module handles multiple levels of 
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interruption signals. 

❖ Serial UO control: This module interfaces to devices that 

communicate 1 bit at a time. 

Table 15.2 describes the external signals into and out of the 8085. These 

are linked to the external system bus. These signals are the interface 

between the 8085 processor and the rest of the system (Figure 12). 

 

The control unit is identified as having two components labeled (1) 

instruction decoder and machine cycle encoding and (2) timing and 

control. A discussion of the first component is deferred until the next 

section. The essence of the control unit is the timing and control module. 

This module includes a clock and accepts as inputs the current instruction 

and some external control signals. Its output consists of control signals to 

the other components of the processor plus control signals to the external 

system bus. 

 

The timing of processor operations is synchronized by the clock and 

controlled by the control unit with control signals. Each instruction cycle 

is divided into one to five machine cycles; each machine cycle is in turn 

divided into three to five states. Each state lasts one clock cycle. During 

a state, the processor performs one or a set of simultaneous micro-

operations as determined by the control signals. 

 

The number of machine cycles is fixed for a given instruction but varies 

from one instruction to accesses. Thus, the number of machine cycles for 

an instruction depends on t- lie number of times the processor must 

communicate with external devices. For example, if an instruction 

consists of two 8-bit portions, then two machine cycles are required to 

fetch the instruction. If that instruction involves a 1-byte memory or I/O 

operation, then a third machine cycle is required for execution. 
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Figure 14. Intel 8085 External Control 

 

Figure 14 gives an example of 8085 timing, showing the value of external 

control signals. Of course, at the same time, the control unit generates 

internal control signals that control internal data transfers. The diagram 

shows the instruction cycle for an OUT instruction. Three machine cycles 

(M1, MZ, M3) are needed. During the first, the OUT instruction is fetched. 

The second machine cycle fetches the second half of the instruction, 

which contains the number of the I/O device selected for output. During 

the third cycle, the contents of the AC are written out to the selected 

device over the data bus. 

Pulse signals the start of each machine cycle from the control unit. The 

ALE pulse alerts external circuits. During timing state Tl of machine cycle 

Ml, the control unit sets the IO/M signal to indicate that this is a memory 

operation. Also, the control unit causes the contents of the PC to be placed 

on the address bus (Als through As) and the address/data bus (ADS through 

ADO). With the falling edge of the ALE pulse, the other modules on the 

bus store the address. During timing state T2, the addressed memory mole 
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places the contents of the addressed memory location on the address/data 

bus. The control unit sets the Read Control (RD) signal to indicate a read, 

but it waits until T3 to copy the data from the bus. This gives the memory 

module time to put the data on the bus and for the signal levels to stabilize. 

The final state, T4, is a bus idle state during which the processor decodes 

the instruction. The remaining machine cycles proceed similarly. 

 

3.3 HARDWIRED CONTROL/ IMPLEMENTATION 

In a hardwired implementation, the control unit is essentially a state 

machine circuit. Its input logic signals are transformed into a set of output 

logic signals, which are the control signals. 

 

3.3.1 CONTROL UNIT INPUT 

The key inputs are the instruction registers, the clock, flags, and control 

bus signals. In the case of the flags and control bus signals, each bit 

typically has some meaning (eg overflow). The other two inputs, 

however, are not directly useful to the control unit. First, consider the 

instruction register. The control unit makes use of the opcode and will 

perform different actions (issue a different combination of control signals) 

for different instructions. To simplify the control unit logic, there should 

be a unique logic input for each opcode. This function can be performed 

by a decoder, which takes an encoded input and produces a single output. 

The clock portion of the control unit issues a representative sequence of 

pulses. This is useful for measuring the duration of micro-operations. 

Essentially the period of the clock pulses must be long enough to allow 

the propagation of signals along data paths and through processor 

circuitry. However, the control unit emits different control signals at 

different time units within the same instruction cycle. Thus, we would like 

a counter as input to the control unit with a different control signal being 

used for T1, T2, and so forth. At the end of an instruction cycle, the 

control unit must feed back to the counter to reinitialize it at T1. 
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Figure 14. The control unit refirements 

With these two refinements, the control unit can be depicted as in Figure 

14. 

To define the hardwired implementation of a control unit, all that remains 

is to discuss the internal logic of the control unit that produces output 

control signals as a function of its input signals. 

Essentially, what must be done is, for each control signal, to derive a 

Boolean expression of that signal as a function of the inputs. This is best 

explained by example. Let us consider again our simple example 

illustrated in Figure 15.5. We saw in Table 

15.1 the micro-operation sequences and control signals needed to control 

three of the four phases of the instruction cycle. 

Let us consider a single control signal, C5. This signal causes data to be 

read from the external data bus into the MBR. Let us define two new 

control signals, P and Q, that have the following interpretation: 

PQ = 00 Fetch Cycle PQ = Ol Indirect Cycle PQ = 10

 Execute Cycle PQ = 11 Interrupt Cycle 

Then the following Boolean expression defines C5: 

C5 = P.Q.T2 + P.Q.T2 

That is, the control signal C5 will be asserted during the second time unit 

of both the fetch and indirect cycles. 

This expression is not complete. C5 is also needed during the execute 

cycle. For our simple example, let us assume that there are only three 

instructions that read from memory: LDA, ADD, and AND. Now we can 

define C5 as 

C5 + P . Q . TZ + P - Q - (LDA + ADD + AND)-T2 

This same process could be repeated for every control signal generated by 

the processor. The result would be a set of Boolean equations that define 

the behavior of the control unit and hence of the processor. 

To tie everything together, the control unit must control the state of the 

instruction cycle. As was mentioned, at the end of each sub-cycle (fetch, 

indirect, execute, interrupt), the control unit issues a signal that causes the 

timing generator to reinitialize and issue Tl. The control unit must also set 

the appropriate values of P and Q to define the next sub-cycle to be 
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performed. 

The reader should be able to appreciate that in a modern complex 

processor, the number of Boolean equations needed to define the control 

unit is very large. The task of implementing a combinatorial circuit that 

satisfies all of these equations becomes extremely difficult. The result is 

that a far simpler approach, known as microprogramming, is usually used. 

 

3.4 MICRO PROGRAMMED CONTROL 

An alternative to a hardwired control unit is a microprogrammed control 

unit in which the logic of the control unit is specified by a microprogram. 

A micro program consists of a sequence of instructions in a 

microprogramming language. These are very simple instructions that 

specify micro-operations. 

 

3.4.1 MICRO INSTRUCTIONS 

Implement a control unit as n interconnection of basic logic elements is 

no easy task. The design must include logic for sequencing through 

micro-operations for executing micro-operations, interpreting opcodes, 

and for making decisions based on ALU flags. An alternative, which has 

been used in many CISC processors, is to implement a microprogrammed 

control unit. 

In addition to the use of control signals, each micro-operation is described 

in symbolic notation. This notation looks suspiciously like a 

programming language. It is a language, known as a microprogramming 

language. Each line describes a set of micro-operations occurring at one 

time and is known as a microinstruction. A sequence of instructions is 

known as a microprogram or firmware. This latter term reflects the fact 

that a microprogram is midway between hardware and software. It is 

easier to design in firmware than hardware, but it is more difficult to 

write a firmware program than a software program. 

How can we use the concept of microprogramming to implement a contra: 

unit? Consider that for each micro-operation, all that the control unit is 

allowed t o do is generate a set of control signals. Thus, for any micro-

operation, each control link: emanating from the control unit is either on 

or off. This condition can, of course, be represented by a binary digit for 

each control line. So we could construct a contra word in which each bit 

represents one control line. Then each micro-operation would be 

represented by a different pattern of 1s and Os in the control word. 

Suppose we string together a sequence of control words to represent the 

sequence of micro-operations performed by the control unit. Next, we 

must recognize that the sequence of micro-operations is not fixed. 

Sometimes we have an indirect cycle; sometimes we do not. So let us put 

our control words in a memory, with each word having a unique address. 

Now add an address field to each control word, indicating the location of 

the next control word to be executed if a certain condition is true (e.g., the 

indirect bit in a memory-reference instruction is 1). Also, add a few bits 
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to specify the condition. 

The result is known as a horizontal microinstruction. The format of the 

microinstruction or control word is as follows. There is one bit for each 

internal processor control line and one bit for each system bus control line 

There is a condition field indicating the condition under which there 

should be a’ branch, and there is a field with the address of the 

microinstruction to be executed next when a branch is taken. Such a 

microinstruction is interpreted as follows: 

• To execute this microinstruction, turn on all the control lines 

indicated by a 1 bit; leave off all control lines indicated by a 0 bit. The 

resulting control signals will cause one or more micro-operations to be 

performed. 

•  If the condition indicated by the condition bits is false, 

execute the next microin- struction in sequence. 

• If the condition indicated by the condition bits is true, the next 

microinstruction to be executed is indicated in the address field. 

Figure 3.4.1b shows how these control words or microinstructions could 

be arranged in a control memory. The microinstructions in each routine 

are to be executed sequentially. Each routine ends with a branch or jump 

instruction indicating where to go next. There is a special execute cycle 

routine whose only purpose is to signify that one of the machine 

instruction routines (AND, ADD, and so on) is to be executed next, 

depending on the current opcode. 

The control memory is a concise description of the complete operation of 

the control unit. It defines the sequence of micro-operations to be 

performed during each cycle (fetch, indirect, execute, interrupt), and it 

specifies the sequencing of these cycles. If nothing else, this notation 

would be a useful device for documenting the functioning of a control unit 

for a particular computer. But it is more than that. It is also a way of 

implementing the control unit. 

The control memory contains a program that describes the behavior of the 

control unit. It follows that we could implement the control unit by simply 

executing that program. The set of micro instructions is stored in the 

control memory. The control address register contains the address of the 

next microinstruction to be read. When a microinstruction is read from 

the control memory, it is transferred to a control buffer register the left-

hand portion of that register connects to the control lines emanating from 

the control unit. Thus, reading a microinstruction from the control 

memory is the same as executing that microinstruction. The third element 

shown in the figure is a sequencing unit that loads the control address 

register and issues a read command. 

The control unit functions as follows: 

1. To execute an instruction, the sequencing logic unit issues a READ 

command to the control memory. 

2.  The word whose address is Specified in the control address 

register is read into the control buffer register. 
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3.  The content of the control buffer register generates control 

signals and next address information for the sequencing logic unit. 

4. The sequencing logic unit loads a new address into the control 

address register based on the next-address information from the control 

buffer register and the ALU flags. 

All this happens during one clock pulse. 

The last step just listed needs elaboration. After each microin- struction, 

the sequencing logic unit loads a new address into the control address 

register. Depending on the value of the ALU flags and the control buffer 

register, one of three decisions is made: 

Depending on the value of the ALU flags and the control buffer register, 

one of three decisions is made: 

• Get the next instruction: Add 1 to the control address register. 

• Jump to a new routine based on a jump microinstruction: Load the 

address field of the control buffer register into the control address register. 

• Jump to a machine instruction routine: Load the control address 

register based on the opcode in the IR. 

3.4.2 ADVANTAGES AND DISADVANTAGES 

The principal advantage of the use of micro-programming to implement 

a control unit is that it simplifies the design of the control unit. Thus it is 

both cheaper and less error-prone to implement. A hard-wired control unit 

must contain complex logic for sequencing through the many micro-

operation s of the instructions cycle. On the other hand the decoders and 

sequencing logic unit of a microprogrammed control unit are very simple 

pieces of logic. 

The principal disadvantage of a micro programmed unit is that it will be 

somewhat slower than a hardwired unit of comparable technology. 

Despite this, microprogramming is the dominant technique for 

implementing control units in pure CISC architecture due to its ease of 

implementation. RISC processors with their simpler instruction format, 

typically use hardwired control units 

The two basic tasks performed by a microprogrammed control unit are as 

follows: 

- Micro instruction sequencing: Get the next control signals needed 

to execute the micro instruction. In designing a control unit, these tasks 

must be considered together because both affect the format of the micro-

instruction and the timing of the control unit. 

Self-Assessment Exercises 2 

 

Answer the following questions by choosing the most suitable option: 

 

1. What is the main advantage of microprogrammed control units? 

   A. They are faster than hardwired units 

   B. They are easier to design and modify 

   C. They use less power 

   D. They are more reliable 
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2. Which type of processors typically use hardwired control units? 

   A. CISC processors 

   B. RISC processors   

   C. Both CISC and RISC 

   D. Neither CISC nor RISC 

 

4.0 CONCLUSION 

Micro- operations are the functional or atomic operations of a processor. 

The concepts of micro- operation serve as a guide to the design of the 

control unit. 

5.0 SUMMARY 

Each instruction cycle is made up of a set of micro-operations that 

generate control signals. Execution is accomplished by the effect of these 

control signals, emanating from the control unit to the ALU registers and 

system interconnection structure. Finally, an approach to the 

implementation of the control unit referred to as hard-wired 

implementation is presented. Furthermore, the concept of micro- 

operations leads to an elegant and powerful approach to control unit 

implementation, known as micro programming. Besides each instruction 

in the machine language of the processor is translated into a sequence of 

lower-level control unit instructions referred to as micro-instructions and 

the process of translation is referred to as microprogramming. 

6.0 TUTOR- MARKED ASSIGNMENT 

1. What is the relationship between instructions and micro 

operations? 

2. Briefly what is meant by a hard-wired implementation of a control 

unit? 

3. What are the basic tasks performed by a micro programmed 

control unit? 

4. What is the difference between a hard-wired implementation and 

a micro-programmed implementation of a control unit? 

7.1 Possible Answers to Self-Assessment Exercises 

 

Self-Assessment Exercise 1 

1. Micro-operations 

2. Three, four 

3. Hardwired, microprogrammed 

 

Self-Assessment Exercise 2 

1. B 

2. B 
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MODULE 3   CPU ORGANIZATION 

 

UNIT 1: CPU Organization 

UNIT 2: The Arithmetic and Logic Unit 

UNIT 3: Control Unit 

 

UNIT 1 CPU ORGANIZATION 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main content 

3.1 History of CPU 

3.2 How the CPU work 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor marked assignment 

7.0 References/further reading 

 

1.0 INTRODUCTION 

The full form of the CPU is the Central Processing Unit. It is the brain of 

the computer. All types of data processing operations and all important 

functions of a computer are performed by the CPU. It helps input and 

output devices communicate with each other and perform their respective 

operations. It also stores data that are input, intermediate results in 

between processing, and instructions. In this unit, we introduce the basic 

CPU organization and its instructions. This module also shows how a 

CPU is made, what’s inside a CPU, how computer memory works, and 

how a CPU works. 

A Central Processing Unit is the most important component of a computer 

system. A CPU is hardware that performs data input/output, processing 

and storage functions for a computer system. A CPU can be installed into 

a CPU socket. These sockets are generally located on the motherboard. 

CPU can perform various data processing operations. CPU can store data, 

instructions, programs, and intermediate results. 

 

2.0 OBJECTIVES 

At the end of the unit, you should be able to 

• Recognize the history of Intel microprocessors 

• Recall how a CPU is made from sand to chip  

• List what’s inside a CPU 

• Demonstrate knowledge of computer memory integrating with a 

CPU 

3.1 History of CPU 

Since 1823, when Baron Jons Jakob Berzelius discovered silicon, which 

is still the primary component used in the manufacture of CPUs today, the 

history of the CPU has experienced numerous significant turning points. 
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The first transistor was created by John Bardeen, Walter Brattain, and 

William Shockley in December 1947. in 1958, the first working 

integrated circuit was built by Robert Noyce and Jack Kilby. 

The Intel 4004 was the company’s first microprocessor, which it unveiled 

in 1971. Ted Hoff’s assistance was needed for this. When Intel released 

its 8008 CPU in 1972, Intel 8086 in 1976, and Intel 8088 in June 1979, it 

contributed to yet another win. The Motorola 68000, a 16/32-bit 

processor, was also released in 1979. The Sun also unveiled the SPARC 

CPU in 1987. AMD unveiled the AM386 CPU series in March 1991. 

In January 1999, Intel introduced the Celeron 366 MHZ and 400 MHz 

processors. AMD back in April 2005 with its first dual-core processor. 

Intel also introduced the Core 2 Dual processor in 2006. Intel released the 

first Core i5 desktop processor with four cores in September 2009. 

In January 2010, Intel released other processors like the Core 2 Quad 

processor Q9500, the first Core i3 and i5 mobile processors, first Core i3 

and i5 desktop processors. 

In June 2017, Intel released the Core i9 desktop processor, and Intel 

introduced its first Core i9 mobile processor In April 2018. 

Different Parts of CPU 

Now, the CPU consists of 3 major units, which are: 

• Memory or Storage Unit 

• Control Unit 

• ALU (Arithmetic Logic Unit) 

Let us now look at the block diagram of the computer: 

 
Here, in this diagram, the three major components are also shown. So, let 

us discuss these major components: 
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Memory or Storage Unit 

As the name suggests this unit can store instructions, data, and 

intermediate results. The memory unit is responsible for transferring 

information to other units of the computer when needed. It is also known 

as an internal storage unit or the main memory or the primary storage 

or Random Access Memory (RAM) as all these are storage devices. 

Its size affects speed, power, and performance. There are two types of 

memory in the computer, which are primary memory and secondary 

memory. Some main functions of memory units are listed below: 

Data and instructions are stored in memory units which are required for 

processing. 

It also stores the intermediate results of any calculation or task when they 

are in process. 

The final results of processing are stored in the memory units before these 

results are released to an output device for giving the output to the user. 

All sorts of inputs and outputs are transmitted through the memory unit. 

Control Unit 

As the name suggests, a control unit controls the operations of all parts of 

the computer but it does not carry out any data processing operations. 

Executing already stored instructions, It instructs the computer by using 

the electrical signals to instruct the computer system. It takes instructions 

from the memory unit and then decodes the instructions after that it 

executes those instructions. So, it controls the functioning of the 

computer. Its main task is to maintain the flow of information across the 

processor. Some main functions of the control unit are listed below: 

Controlling of data and transfer of data and instructions is done by the 

control unit among other parts of the computer. 

The control unit is responsible for managing all the units of the computer. 

The main task of the control unit is to obtain the instructions or data that 

is input from the memory unit, interpret them, and then direct the 

operation of the computer according to that. 

The control unit is responsible for communication with Input and output 

devices for the transfer of data or results from memory. 

The control unit is not responsible for the processing of data or storing 

data. 

ALU (Arithmetic Logic Unit)  

ALU (Arithmetic Logic Unit) is responsible for performing arithmetic 

and logical functions or operations. It consists of two subsections, which 

are: 

Arithmetic Section 

Logic Section 

Now, let us know about these subsections: 

Arithmetic Section: By arithmetic operations, we mean operations like 

addition, subtraction, multiplication, and division, and all these operation 

and functions are performed by ALU. Also, all the complex operations 

are done by making repetitive use of the mentioned operations by ALU. 

https://www.geeksforgeeks.org/random-access-memory-ram/
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Logic Section: By Logical operations, we mean operations or functions 

like selecting, comparing, matching, and merging the data, and all these 

are performed by ALU. 

Note: CPU may contain more than one ALU and it can be used for 

maintaining timers that help run the computer system. 

What Does a CPU Do? 

The main function of a computer processor is to execute instruction and 

produce an output. CPU work are Fetch, Decode and Execute are the 

fundamental functions of the computer. 

Fetch: the first CPU gets the instruction. That means binary numbers that 

are passed from RAM to CPU. 

Decode: When the instruction is entered into the CPU, it needs to decode 

the instructions. with the help of ALU(Arithmetic Logic Unit) the process 

of decode begins. 

Execute: After decode step the instructions are ready to execute 

Store: After execute step the instructions are ready to store in the 

memory. 

Types of CPU 

We have three different types of CPU: 

Single Core CPU: The oldest type of computer CPUs is single core CPU. 

These CPUs were used in the 1970s. these CPUs only have a single core 

that preform different operations. This means that the single core CPU 

can only process one operation at a single time. single core CPU is not 

suitable for multitasking. 

Dual-Core CPU: Dual-Core CPUs contain a single Integrated Circuit 

with two cores. Each core has its cache and controller. These controllers 

and cache are work as a single unit. dual core CPUs can work faster than 

the single-core processors. 

Quad-Core CPU: Quad-Core CPUs contain two dual-core processors 

present within a single integrated circuit (IC) or chip. A quad-core 

processor contains a chip with four independent cores. These cores read 

and execute various instructions provided by the CPU. Quad Core CPU 

increases the overall speed for programs. Without even boosting the 

overall clock speed it results in higher performance. 

Self-Assessment Exercises 1 

        Answer the following questions by choosing the most suitable 

option: 

 

1. What are the three major components of a CPU? 

   A. Input, Output, Storage 

   B. Memory Unit, Control Unit, ALU 

   C. Hardware, Software, Firmware 

   D. Registers, Cache, Bus 

 

2. Which CPU type has multiple independent cores? 

   A. Single Core CPU 
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   B. Dual-Core CPU 

   C. Quad-Core CPU 

   D. Both B and C 

 

3. What does the CPU do during the "Fetch" step? 

   A. Executes the instruction 

   B. Stores the result 

   C. Gets the instruction from memory 

   D. Decodes the instruction 

3.2 How the CPU work 

Inside every computer is a central processing unit and inside every CPU 

are small components that carry out all the instructions for every program 

you run. These components include AND gates, OR gates, NOT gates, 

Clock, Multiplexer, ALU (arithmetic logic unit), etc. Data bus performs 

data transfer within a CPU and a computer. As shown in Fig. 8-1, the CPU 

is organized with a Program Counter (PC), Instruction Register (IR), 

Instruction Decoder, Control Unit, Arithmetic Logic Unit (ALU), 

Registers, and Buses. PC holds the address of the next instruction to be 

fetched from Memory. IR holds each instruction after it is fetched from 

Memory. Instruction Decoder decodes and interprets the contents of the 

IR, and splits a whole instruction into fields for the Control Unit to 

interpret. The Control Unit coordinates all activities within the CPU, has 

connections to all parts of the CPU, and includes a sophisticated timing 

circuit. ALU carries out arithmetic and logical operations, exemplified by 

addition, comparison, and Boolean AND/OR/NOT operations. Within 

ALU, input registers hold the input operands and output register holds the 

result of an ALU operation. Once completing ALU operation, the result 

is copied from the ALU output register to its final destination. 
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Figure 15. The CPU Organization 

 

General-purpose registers are available for the programmer to use in their 

programs within the CPU. Typically, the programmer tries to maximize 

the use of these registers to speed program execution. Busses serve as 

communication highways for passing information on the computer. 

The computer has memory which similarly memorizes data we remember 

past events. The register is the fastest memory which is located within the 

CPU of the computer. 

 

 
 

Figure 16. The CPU Overview 

 

Figure 16 shows the CPU overview which consists of PC, instruction 

memory, registers, ALU, and Data memory. PC always holds the address 

of the next instruction to be fetched from Memory. Instruction, e.g. add 

$t1, $t2, $t3, is fetched into instruction memory. Register operands are 

used by an instruction in registers, where $t1 is the first source operand, 

$t2 is the second source operand, and $t3 is the storage of the result. ALU 

executes an arithmetic operation, e.g. Sum of $t1 and $t2. The result from 

the ALU or memory is written back into the register file ($t3). In the 

figure, ALU results and the output of data memory can’t just join wires 

together. The red dash-dot line can be designed with the multiplexer to 

put the wires together. 

The following figure shows CPU control with multiplexers. The first 

multiplexer controls what value replaces the PC (PC + 4 or the branch 

destination address), where the Mux is controlled by the AND gate with 

the Zero output of ALU and a control signal. The second multiplexer 

steers the output of the ALU or the output of the data memory. The third 

one determines whether the second ALU input is from the registers or 
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from the offset field of the instruction (for a load or store). 

4.0 CONCLUSION 

The Central Processing Unit (CPU) is often referred to as the brain of the 

computer. It executes instructions from computer programs by 

performing basic arithmetic, logical, control, and input/output (I/O) 

operations specified by the instructions. The CPU has a critical role in 

determining the speed and capability of a computer system. 

5.0 SUMMARY 

The Central Processing Unit (CPU) is the primary component of a 

computer responsible for interpreting and executing instructions. Often 

referred to as the computer's brain, it consists of the Arithmetic Logic Unit 

(ALU), which performs calculations and logical operations, and the 

Control Unit (CU), which directs all operations. The CPU fetches 

instructions from memory, decodes them, executes them, and writes back 

the results. Its performance is influenced by factors such as clock speed, 

number of cores, and cache size. Modern CPUs are designed for a range 

of devices, from high-performance servers to power-efficient mobile 

devices, continually advancing in power efficiency, integration, and 

parallel processing capabilities. 

 

6.0 TUTOR- MARKED ASSIGNMENT 

1. List and briefly explain parts of the CPU. 

2. List the two most common types of control unit 

7.1 Possible Answers to Self-Assessment Exercises 

 

Self-Assessment Exercise 1 

1. B 

2. D 

3. C 
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UNIT 2 THE ARITHMETIC AND LOGIC UNIT 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main content 

3.1 The General Concepts of CPU 

3.2 Configurations of the ALU 

3.3 Operations Performed by ALU 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor marked assignment 

7.0 References/further 

 

1.0 Introduction 

The Arithmetic Logic Unit (ALU) is a fundamental component of the 

Central Processing Unit (CPU) that is responsible for executing all 

arithmetic and logical operations within a computer. It performs essential 

arithmetic operations such as addition, subtraction, multiplication, and 

division, as well as logical operations including AND, OR, NOT, and 

XOR. Additionally, the ALU handles bitwise operations, which involve 

the manipulation of individual bits within a binary number. These 

operations are critical for various computational tasks, such as 

calculations, data manipulation, and decision-making processes. The 

ALU consists of input registers that store the operands, operational logic 

that performs the calculations, and result storage that temporarily holds 

the output before it is transferred to other CPU components or memory. 

Beyond basic calculations, the ALU plays a crucial role in comparison 

operations, such as determining whether numbers are equal, greater than, 

or less than each other. This capability is essential for implementing 

control flow in programs, enabling the CPU to make decisions based on 

conditional statements and execute different instructions based on those 

conditions. The efficiency and speed of the ALU directly impact the 

overall performance of the CPU, as it processes the core computations 

required for running applications and executing instructions. By 

facilitating both arithmetic and logical operations, the ALU enables the 

CPU to perform complex tasks and drive the functionality of the 

computer. 

2.0 Objectives 

At the end of this unit, you should be able to 

- Understand the general concepts of the Arithmetic and Logic Unit 

- Explain the ALU of the computer system. 

 

3.1 The General Concepts of CPU 

In the computer system, ALU is a main component of the central 

processing unit, which stands for arithmetic logic unit and performs 

arithmetic and logic operations. It is also known as an integer unit (IU) 
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which is an integrated circuit within a CPU or GPU, which is the last 

component to perform calculations in the processor. It can perform all 

processes related to arithmetic and logic operations such as addition, 

subtraction, and shifting operations, including Boolean comparisons 

(XOR, OR, AND, and NOT operations). Also, binary numbers can 

accomplish mathematical and bitwise operations. The arithmetic logic 

unit is split into AU (arithmetic unit) and LU (logic unit). The operands 

and code used by the ALU tell it which operations have to be performed 

according to input data. When the ALU completes the processing of input, 

the information is sent to the computer's memory. 

 

 
 

 

Except for performing calculations related to addition and subtraction, 

ALUs handle the multiplication of two integers as they are designed to 

execute integer calculations; hence, its result is also an integer. However, 

division operations commonly may not be performed by ALU as division 

operations may produce a result in a floating-point number. Instead, the 

floating-point unit (FPU) usually handles the division operations; other 

non-integer calculations can also be performed by FPU. 

Additionally, engineers can design the ALU to perform any type of 

operation. However, ALU becomes costlier as the operations become 

more complex because ALU destroys more heat and takes up more space 

in the CPU. This is the reason for making powerful ALUs by engineers, 

which provides the surety that the CPU is fast and powerful as well. 

The calculations needed by the CPU are handled by the arithmetic logic 

unit (ALU); most of the operations among them are logical. If the CPU is 

made more powerful, which is made based on how the ALU is designed. 

Then it creates more heat and takes more power or energy. Therefore, 

there must be moderation between how complex and powerful ALU is 

and not be costly. This is the main reason the faster CPUs are costlier; 

hence, they take up much power and destroy more heat. Arithmetic and 
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logic operations are the main operations that are performed by the ALU; 

it also perform bit-shifting operations. 

Although the ALU is a major component in the processor, the ALU's 

design and function may be different in the different processors. For case, 

some ALUs are designed to perform only integer calculations, and some 

are for floating-point operations. Some processors include a single 

arithmetic logic unit to perform operations, and others may contain 

numerous ALUs to complete calculations. The operations performed by 

ALU are: 

Logical Operations: The logical operations consist of NOR, NOT, AND, 

NAND, OR, XOR, and more. 

Bit-Shifting Operations: It is responsible for displacement in the 

locations of the bits to the right or left by a certain number of places that 

is known as a multiplication operation. 

Arithmetic Operations: Although it performs multiplication and 

division, this refers to bit addition and subtraction. But multiplication and 

division operations are more costly to make. In the place of multiplication, 

addition can be used as a substitute and subtraction for division. 

Arithmetic Logic Unit (ALU) Signals 

A variety of input and output electrical connections are contained by the 

ALU, which led to casting the digital signals between the external 

electronics and ALU. 

ALU input gets signals from the external circuits, and in response, 

external electronics get outputs signals from ALU. 

Data: Three parallel buses are contained by the ALU, which include two 

input and output operand. These three buses handle the number of signals, 

which are the same. 

Opcode: When the ALU is going to operate, it is described by the 

operation selection code what type of operation an ALU is going to 

perform arithmetic or logic operation. 

Status 

Output: The results of the ALU operations are provided by the status 

outputs in the form of supplemental data as they are multiple signals. 

Usually, status signals like overflow, zero, carry out, negative, and more 

are contained by general ALUs. When the ALU completes each 

operation, the external registers contain the status output signals. These 

signals are stored in the external registers that led to making them 

available for future ALU operations. 

Input: When ALU once operates, the status inputs allow ALU to access 

further information to complete the operation successfully. Furthermore, 

stored carry-out from a previous ALU operation is known as a single 

"carry-in" bit. 
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3.2 Configurations of the ALU 

The description of how ALU interacts with the processor is given below. 

Every arithmetic logic unit includes the following configurations: 

Instruction Set Architecture 

Accumulator 

Stack 

Register to Register 

Register Stack 

Register Memory 

Accumulator 

The intermediate result of every operation is contained by the 

accumulator, which means Instruction Set Architecture (ISA) is not more 

complex because it is only required to hold one bit. 

Generally, they are much faster and less complex but to make the 

Accumulator more stable; additional codes need to be written to fill it with 

proper values. Unluckily, with a single processor, it is very difficult to 

find Accumulators to execute parallelism. An example of an Accumulator 

is the desktop calculator. 

Stack 

Whenever the latest operations are performed, these are stored on the 

stack that holds programs in top-down order, which is a small register. 

When the new programs are added to execute, they push to put the old 

programs. 

Register-Register Architecture 

It includes a place for 1 destination instruction and 2 source instructions, 

also known as a 3-register operation machine. This Instruction Set 

Architecture must be longer for storing three operands, 1 destination, and 

2 sources. After the end of the operations, writing the results back to the 

Registers would be difficult, and also the length of the word should be 

longer. However, it can cause more issues with synchronization if the 

write-back rule is followed at this place. 

The MIPS component is an example of the register-to-register 
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Architecture. For input, it uses two operands, and for output, it uses a third 

distinct component. The storage space is hard to maintain as each needs a 

distinct memory; therefore, it has to be premium at all times. Moreover, 

it might be difficult to perform some operations. 

Register - Stack Architecture 

Generally, the combination of Register and Accumulator operations is 

known as Register-Stack Architecture. The operations that need to be 

performed in the register-stack Architecture are pushed onto the top of the 

stack. And its results are held at the top of the stack. With the help of 

using the Reverse polish method, more complex mathematical operations 

can be broken down. Some programmers, to represent operands, use the 

concept of a binary tree. It means that the reverse polish methodology can 

be easy for these programmers, whereas it can be difficult for other 

programmers. To carry out Push and Pop operations, there is a need to be 

new hardware created. 

 

Self-Assessment Exercises 1 

 

Fill in the gaps in the sentences below with the most suitable words: 

 

1. The ALU is responsible for performing ________ and ________ 

operations. 

 

2. ALU stands for ________ ________ Unit. 

 

3. The three main types of operations performed by ALU are 

arithmetic operations, logical operations, and ________ operations. 

 

Register and Memory 

In this architecture, one operand comes from the register, and the other 

comes from the external memory as it is one of the most complicated 

architectures. The reason behind this is that every program might be very 

long as they require to be held in full memory space. Generally, this 

technology is integrated with Register-Register Register technology and 

practically cannot be used separately. 

ALUs, in addition to doing addition and subtraction calculations, also 

handle the process of multiplication of two integers because they are 

designed to perform integer calculations; thus, the result is likewise an 

integer. Division operations, on the other hand, are frequently not done 

by ALU since division operations can result in a floating-point value. 

Instead, division operations are normally handled by the floating-point 

unit (FPU), which may also execute other non-integer calculations. 

Engineers can also design the ALU to do any operation they choose. 

However, as the operations become more sophisticated, ALU becomes 

more expensive since it generates more heat as well as takes up more 

space on the CPU. Therefore, engineers create powerful ALUs, ensuring 
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that the CPU is both quick and powerful. 

The ALU performs the computations required by the CPU; most of the 

operations are logical. If the CPU is built more powerful, it will be 

designed based on the ALU. Then it generates more heat and consumes 

more energy or power. As a result, there must be a balance between how 

intricate and strong ALU is and how much it costs. The primary reason 

why faster CPUs are more expensive is that they consume more power 

and generate more heat due to their ALUs. The ALU’s major functions 

are arithmetic and logic operations, as well as bit-shifting operations. 

3.3 Operations Performed by ALU 

Although the ALU is a critical component of the CPU, the design and 

function of the ALU may vary amongst processors. Some ALUs, for 

example, are designed solely to conduct integer calculations, whereas 

others are built to perform floating-point computations. Some processors 

have a single arithmetic logic unit that performs operations, whereas 

others have many ALUs that conduct calculations. ALU’s operations are 

as follows: 

1. Arithmetic Operators: It refers to bit subtraction and addition, despite 

the fact that it does multiplication and division. Multiplication and 

division processes, on the other hand, are more expensive to do. Addition 

can be used in place of multiplication, while subtraction can be used in 

place of division. 

2. Bit-Shifting Operators: It is responsible for a multiplication 

operation, which involves shifting the locations of a bit to the right or left 

by a particular number of places. 

3. Logical Operations: These consist of NOR, AND, NOT, NAND, 

XOR, OR, and more. 

ALU Signals 

The ALU contains a variety of electrical input and output connections, 

which result in the digital signals being cast between the ALU and the 

external electronics. External circuits send signals to the ALU input, and 

the ALU sends signals to the external electronics. 

Opcode: The operation selection code specifies whether the ALU will 

conduct arithmetic or a logic operation when it performs the operation. 

Data: The ALU contains three parallel buses, each with two input and 

output operands. These three buses are in charge of the same amount of 

signals. 

Advantages of ALU 

ALU has various advantages, which are as follows: 

• It supports parallel architecture and applications with high 

performance. 

• It can get the desired output simultaneously and combine integer 

and floating-point variables. 

• It has the capability of performing instructions on a very large set 

and has a high range of accuracy. 

• Two arithmetic operations in the same code like addition and 
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multiplication or addition and subtraction, or any two operands can be 

combined by the ALU. For case, A+B*C. 

• Throughout the whole program, they remain uniform, and they are 

spaced in a way that they cannot interrupt parts in between. 

• In general, it is very fast; hence, it provides results quickly. 

• There are no sensitivity issues and no memory wastage with ALU. 

• They are less expensive and minimize the logic gate requirements. 

Disadvantages of ALU 

The disadvantages of ALU are discussed below: 

• With the ALU, floating variables have more delays, and the 

designed controller is not easy to understand. 

• The bugs would occur in our result if memory space were definite. 

• It is difficult to understand amateurs as their circuit is complex; 

also, the concept of pipelining is complex to understand. 

• A proven disadvantage of ALU is that there are irregularities in 

latencies. 

• Another demerit is rounding off, which impacts accuracy. 

Self-Assessment Exercises 2 

 

Answer the following questions by choosing the most suitable option: 

 

1. Which of the following is NOT an advantage of ALU? 

   A. High processing speed 

   B. Support for parallel architecture 

   C. Unlimited memory capacity 

   D. No sensitivity issues 

 

2. What type of operations does ALU handle for floating-point numbers? 

   A. All floating-point operations 

   B. Limited floating-point operations 

   C. No floating-point operations 

   D. Only division operations 

 

4.0 CONCLUSION 

An arithmetic logic unit (ALU) is a key component of a computer’s 

central processor unit. The ALU performs all arithmetic and logic 

operations that must be performed on instruction words. The ALU is split 

into two parts in some microprocessor architectures: the AU and the LU. 

ALU conducts arithmetic and logic operations. It is a major component 

of the CPU in a computer system. An integer unit (IU) is just an integrated 

circuit within a GPU or GPU that performs the last calculations in the 

processor. It can execute all arithmetic and logic operations, including 

Boolean comparisons, such as subtraction, addition, and shifting (XOR, 

OR, AND, and NOT operations). Binary numbers can also perform 

bitwise and mathematical operations. AU (arithmetic unit) and LU (logic 

unit) are two types of arithmetic logic units. The ALU’s operands and 
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code instruct it on which operations to perform based on the incoming 

data. When the ALU has finished processing the data, it sends the result 

to the computer memory. 

5.0 SUMMARY 

The ALU is a crucial component of the CPU responsible for executing 

arithmetic operations like addition, subtraction, multiplication, and 

division, as well as logical operations. It also handles bitwise operations 

and comparisons, enabling the CPU to make decisions based on 

conditional statements. Comprising input registers for operands, 

operational logic for performing calculations, and result storage, the 

ALU's efficiency directly influences the CPU's overall performance. By 

facilitating essential computations and decision-making processes, the 

ALU plays a key role in the execution of programs and the overall 

functionality of the computer. 

 

6.0 TUTOR MARKED ASSIGNMENT 

1. What are some of the potential advantages of the ALU? 

2. What are the chief characteristics of the ALU? 

 

7.1 Possible Answers to Self-Assessment Exercises 

 

Self-Assessment Exercise 1 

1. Arithmetic, logical 

2. Arithmetic Logic 

3. Bit-shifting 

 

Self-Assessment Exercise 2 

1. C 

2. B 
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UNIT 3 THE CONTROL UNIT 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 The Control Unit 

3.2 Types of Control Unit 

3.3 Advantages and Disadvantages of Control Unit 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor- Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 

The control unit (CU) is a critical component of a computer's central 

processing unit (CPU), responsible for directing the operation of the 

processor. It orchestrates the fetching, decoding, and execution of 

instructions by generating appropriate control signals to the various 

subsystems within the CPU. The CU ensures that the data flows correctly 

between the CPU, memory, and input/output devices, and it regulates the 

execution of instructions by controlling the timing and sequencing of 

operations. By interpreting the instructions in a program, the control unit 

determines which arithmetic, logic, or control operation is to be 

performed next and manages the data paths accordingly. 

The control unit can be designed using either hardwired logic or 

microprogramming. A hardwired control unit uses fixed logic circuits to 

control signals, which makes it fast but less flexible and more difficult to 

modify or update. In contrast, a microprogrammed control unit stores 

control signals in a memory-based control store, allowing for easier 

modifications and updates at the cost of some performance. The CU plays 

a crucial role in the overall function and efficiency of the CPU, ensuring 

that all operations are performed correctly and in the proper sequence, 

thereby enabling the execution of complex computational tasks. 

 

2.0 OBJECTIVES 

At the end of this unit, you should be able to: 

• Explain the control unit. 

• Discuss the types of control units. 

• Understand how the control unit works. 

 

A Central Processing Unit is the most important component of a 

computer system. A control unit is a part of the CPU. A control unit 

controls the operations of all parts of the computer but it does not carry 

out any data processing operations. 

What is a Control Unit? 

The Control Unit is the part of the computer’s central processing unit 

(CPU), which directs the operation of the processor. It was included as 
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part of the Von Neumann Architecture by John von Neumann. It is the 

responsibility of the control unit to tell the computer’s memory, 

arithmetic/logic unit, and input and output devices how to respond to the 

instructions that have been sent to the processor. It fetches internal 

instructions of the programs from the main memory to the processor 

instruction register, and based on this register contents, the control unit 

generates a control signal that supervises the execution of these 

instructions. A control unit works by receiving input information which it 

converts into control signals, which are then sent to the central processor. 

The computer’s processor then tells the attached hardware what 

operations to perform. The functions that a control unit performs are 

dependent on the type of CPU because the architecture of the CPU varies 

from manufacturer to manufacturer. 

Examples of devices that require a CU are: 

Control Processing Units(CPUs) 

Graphics Processing Units(GPUs) 

 

 
 

Functions of the Control Unit 

• It coordinates the sequence of data movements into, out of, and 

between a processor’s many sub-units. 

• It interprets instructions. 

• It controls data flow inside the processor. 

• It receives external instructions or commands which it converts to 

a sequence of control signals. 

• It controls many execution units (i.e. ALU, data buffers, 

and registers) contained within a CPU. 

• It also handles multiple tasks, such as fetching, decoding, 

execution handling, and storing results. 

3.2 Types of Control Units 

There are two types of control units: 

Hardwired 
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Micro programmable control unit. 

Hardwired Control Unit 

In the Hardwired control unit, the control signals that are important for 

instruction execution control are generated by specially designed 

hardware logical circuits, in which we cannot modify the signal 

generation method without a physical change of the circuit structure. The 

operation code of an instruction contains the basic data for control signal 

generation. In the instruction decoder, the operation code is decoded. The 

instruction decoder constitutes a set of many decoders that decode 

different fields of the instruction opcode. 

As a result, few output lines going out from the instruction decoder 

obtains active signal values. These output lines are connected to the inputs 

of the matrix that generates control signals for execution units of the 

computer. This matrix implements logical combinations of the decoded 

signals from the instruction opcode with the outputs from the matrix that 

generates signals representing consecutive control unit states and with 

signals coming from the outside of the processor, e.g. interrupt signals. 

The matrices are built in a similar way as a programmable logic arrays. 

 

 

 
 

 

Control signals for an instruction execution have to be generated not in a 

single time point but during the entire time interval that corresponds to 

the instruction execution cycle. Following the structure of this cycle, the 

suitable sequence of internal states is organized in the control unit. A 

number of signals generated by the control signal generator matrix are 

sent back to inputs of the next control state generator matrix. 

This matrix combines these signals with the timing signals, which are 
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generated by the timing unit based on the rectangular patterns usually 

supplied by the quartz generator. When a new instruction arrives at the 

control unit, the control units is in the initial state of new instruction 

fetching. Instruction decoding allows the control unit enters the first state 

relating execution of the new instruction, which lasts as long as the timing 

signals and other input signals as flags and state information of the 

computer remain unaltered. 

A change of any of the earlier mentioned signals stimulates the change of 

the control unit state. This causes that a new respective input is generated 

for the control signal generator matrix. When an external signal appears, 

(e.g. an interrupt) the control unit takes entry into the next control state 

which is the state concerned with the reaction to this external signal (e.g. 

interrupt processing). 

The values of flags and state variables of the computer are used to select 

suitable states for the instruction execution cycle. The last states in the 

cycle are control states that commence fetching the next instruction of the 

program: sending the program counter content to the main memory 

address buffer register and next, reading the instruction word to the 

instruction register of the computer. When the ongoing instruction is the 

stop instruction that ends program execution, the control unit enters an 

operating system state, in which it waits for the next user directive. 

Micro Programmable control unit 

 

 

 
 

 

The fundamental difference between these unit structures and the 

structure of the hardwired control unit is the existence of the control store 

that is used for storing words containing encoded control signals 
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mandatory for instruction execution. In microprogrammed control units, 

subsequent instruction words are fetched into the instruction register in a 

normal way. However, the operation code of each instruction is not 

directly decoded to enable immediate control signal generation but it 

comprises the initial address of a microprogram contained in the control 

store. 

With a single-level control store: In this, the instruction opcode from 

the instruction register is sent to the control store address register. Based 

on this address, the first microinstruction of a microprogram that 

interprets the execution of this instruction is read to the microinstruction 

register. This microinstruction contains in its operation part encoded 

control signals, normally as few bit fields. In a set microinstruction field 

decoder, the fields are decoded. The microinstruction also contains the 

address of the next microinstruction of the given instruction 

microprogram and a control field used to control activities of the 

microinstruction address generator. The last mentioned field decides 

the addressing mode (addressing operation) to be applied to the address 

embedded in the ongoing microinstruction. In microinstructions along 

with conditional addressing mode, this address is refined by using the 

processor condition flags that represent the status of computations in the 

current program.  

 

 
 

 

The last microinstruction in the instruction of the given microprogram is 

the microinstruction that fetches the next instruction from the main 

memory to the instruction register. 

With a two-level control store: In this, in a control unit with a two-level 

control store, besides the control memory for microinstructions, a nano-

https://www.geeksforgeeks.org/addressing-modes/
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instruction memory is included. In such a control unit, microinstructions 

do not contain encoded control signals. The operation part of 

microinstructions contains the address of the word in the nano-instruction 

memory, which contains encoded control signals. The nano-instruction 

memory contains all combinations of control signals that appear in 

microprograms that interpret the complete instruction set of a given 

computer, written once in the form of nano-instructions. In this way, 

unnecessary storing of the same operation parts of microinstructions is 

avoided. In this case, microinstruction words can be much shorter than 

with the single-level control store. It gives a much smaller size in bits of 

the microinstruction memory and, as a result, a much smaller size of the 

entire control memory. The microinstruction memory contains the control 

for the selection of consecutive microinstructions, while those control 

signals are generated on the basis of nano-instructions. In nano-

instructions, control signals are frequently encoded using a 1 bit/ 1 signal 

method that eliminates decoding. 

Self-Assessment Exercises 1 

 

Answer the following questions by choosing the most suitable option: 

 

1. What is the primary function of the Control Unit? 

   A. To perform arithmetic calculations 

   B. To store data permanently 

   C. To control the operations of all parts of the computer 

   D. To provide input/output interfaces 

 

2. Which type of control unit is more flexible but slower? 

   A. Hardwired Control Unit 

   B. Micro-programmed Control Unit 

   C. Both are equally flexible 

   D. Neither is flexible 

 

3. What type of computers typically use hardwired control units? 

   A. CISC computers 

   B. RISC computers 

   C. Both CISC and RISC 

   D. Mainframe computers only 

 

Differences between Hardwired Control unit and Micro-programmed 

Control unit 

There are differences between Micro-programmed CU and Hardwired 

CU, which are described as follows: 
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Hardwired Control Unit Micro-programmed Control Unit 

With the help of a hardware 

circuit, we can implement the 

hardwired control unit. In other 

words, we can say that it is a 

circuitry approach. 

While with the help of 

programming, we can implement 

the micro-programmed control 

unit. 

The hardwired control unit uses 

the logic circuit so that it can 

generate the control signals, 

which are required for the 

processor. 

The micro-programmed CU uses 

microinstruction so that it can 

generate the control signals. 

Usually, control memory is used to 

store these microinstructions. 

In this CU, the control signals are 

going to be generated in the form 

of hard wired. That's why it is 

very difficult to modify the 

hardwired control unit. 

It is very easy to modify the micro-

programmed control unit because 

the modifications are going to be 

performed only at the instruction 

level. 

In the form of logic gates, 

everything has to be realized in 

the hardwired control unit. That's 

why this CU is more costly 

compared to the micro-

programmed control unit. 

The micro-programmed control 

unit is less costly compared to the 

hardwired CU because this control 

unit only requires the 

microinstruction to generate the 

control signals. 

The complex instructions cannot 

be handled by a hardwired 

control unit because when we 

design a circuit for this 

instruction, it will become 

complex. 

The micro-programmed control 

unit is able to handle the complex 

instructions. 

Because of the hardware 

implementation, the hardwired 

control unit is able to use a 

limited number of instructions. 

The micro-programmed control 

unit is able to generate control 

signals for many instructions. 

The hardwired control unit is 

used in those types of computers 

that also use the RISC (Reduced 

instruction Set Computers). 

The micro-programmed control 

unit is used in those types of 

computers that also use the CISC 

(Complex instruction Set 

Computers). 

In the hardwired control unit, the In this CU, the microinstructions 
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hardware is used to generate only 

the required control signals. 

That's why this control unit is 

faster compared to the micro-

programmed control unit. 

are used to generate control signals. 

That's why this CU is slower than 

the hardwired control unit. 

 

Some Other differences between Micro-programmed control unit and 

Hardwire control unit 

Now we will describe these differences on the basis of some parameters, 

such as speed, cost, modification, instruction decoder, control memory, 

etc. These differences are described as follows: 

Speed 

In the hardwired control unit, the speed of operations is very fast. In 

contrast, the micro-programmed control unit needs frequent memory 

access. So the speed of operation of a micro-programmed control unit is 

slow. 

Modification 

If we want to do some modifications to the Hardwired control unit, we 

have to redesign the entire unit. In contrast, if we want to do some 

modification in the micro-programmed control unit, we can do that just 

by changing the microinstructions in the control memory. In this case, the 

more flexible control unit is a micro-programmed control unit. 

Cost 

The implementation of a Hardwire control unit is very much compared to 

the Micro-programmed control unit. In this case, the micro-programmed 

control unit will save our money at the time of implementation. 

Handling Complex Instructions 

If we try to handle the complex instructions with the help of a hardwired 

control unit, it will be very difficult for us to handle them. But if we try 

to handle the complex instructions with the help of a micro-programmed 

control unit, it will be very easy for us to handle them. In this case, also, 

the Micro-programmed control unit is better. 

Instruction decoding 

In the hardwired control unit, if we want to perform instruction decoding, 

it will be very difficult. But if we do the same thing in a micro-

programmed control unit, it will be very easy for us. 

Instruction set size 

A small instruction set is used by the hardwired CU. On the other hand, a 

large instruction set is used by the micro-programmed control unit. 

Control Memory 

The hardwired control unit does not use the control memory to generate 

the control signals, but the micro-programmed CU needs to use the 

control memory to generate the control signals. 
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Applications 

The hardwired control unit is used in those types of processors that use a 

simple instruction set. This set is called a Reduced Instruction Set 

Computer. On the other hand, a micro-programmed control unit is used 

in those types of processors that basically use a complex instruction set. 

This set is called a Complex Instruction Set Computer. 

Advantages of a Well-Designed Control Unit 

Efficient instruction execution: A well-designed control unit can 

execute instructions more efficiently by optimizing the instruction 

pipeline and minimizing the number of clock cycles required for each 

instruction. 

Improved performance: A well-designed control unit can improve the 

performance of the CPU by increasing the clock speed, reducing the 

latency, and improving the throughput. 

Support for complex instructions: A well-designed control unit can 

support complex instructions that require multiple operations, reducing 

the number of instructions required to execute a program. 

Improved reliability: A well-designed control unit can improve the 

reliability of the CPU by detecting and correcting errors, such as memory 

errors and pipeline stalls. 

Lower power consumption: A well-designed control unit can reduce 

power consumption by optimizing the use of resources, such as registers 

and memory, and reducing the number of clock cycles required for each 

instruction. 

Better branch prediction: A well-designed control unit can improve 

branch prediction accuracy, reducing the number of branch 

mispredictions and improving performance. 

Improved scalability: A well-designed control unit can improve the 

scalability of the CPU, allowing it to handle larger and more complex 

workloads. 

Better support for parallelism: A well-designed control unit can better 

support parallelism, allowing the CPU to execute multiple instructions 

simultaneously and improve overall performance. 

Improved security: A well-designed control unit can improve the 

security of the CPU by implementing security features such as address 

space layout randomization and data execution prevention. 

Lower cost: A well-designed control unit can reduce the cost of the CPU 

by minimizing the number of components required and improving 

manufacturing efficiency. 

Disadvantages of a Poorly-Designed Control Unit 

Reduced performance: A poorly designed control unit can reduce the 

performance of the CPU by introducing pipeline stalls, increasing the 

latency, and reducing the throughput. 

Increased complexity: A poorly designed control unit can increase the 

complexity of the CPU, making it harder to design, test, and maintain. 

Higher power consumption: A poorly designed control unit can 

https://www.geeksforgeeks.org/difference-between-register-and-memory/
https://www.geeksforgeeks.org/difference-between-register-and-memory/


IFT 212        COMPUTER ARCHITECTURE AND ORGANIZATION 

78 

increase power consumption by inefficiently using resources, such as 

registers and memory, and requiring more clock cycles for each 

instruction. 

Reduced reliability: A poorly designed control unit can reduce the 

reliability of the CPU by introducing errors, such as memory errors and 

pipeline stalls. 

Limitations on instruction set: A poorly designed control unit may limit 

the instruction set of the CPU, making it harder to execute complex 

instructions and limiting the functionality of the CPU. 

Inefficient use of resources: A poorly designed control unit may 

inefficiently use resources such as registers and memory, leading to 

wasted resources and reduced performance. 

Limited scalability: A poorly designed control unit may limit the 

scalability of the CPU, making it harder to handle larger and more 

complex workloads. 

Poor support for parallelism: A poorly designed control unit may limit 

the ability of the CPU to support parallelism, reducing the overall 

performance of the system. 

Security vulnerabilities: A poorly designed control unit may introduce 

security vulnerabilities, such as buffer overflows or code injection attacks. 

Higher cost: A poorly designed control unit may increase the cost of the 

CPU by requiring additional components or increasing the manufacturing 

complexity. 

4.0 CONCLUSION 

In the world of computer architecture, the Control Unit plays a pivotal 

role in ensuring the effective and efficient functioning of modern 

computing systems. Delving into the intricacies of this vital component 

allows you to gain insight into its core functions, applications, and 

different types. This article will explore the various aspects of the Control 

Unit, including its definition and key role in computer architecture, 

managing the data flow, and its relation to the Central Processing Unit 

(CPU). Moreover, the article will navigate the different types of Control 

Units, such as Hardwired and Microprogrammed Control Units, 

discussing their advantages, disadvantages, flexibility, and adaptability. 

You will also discover the crucial differences between these Control Unit 

types and understand how to choose the appropriate one for your 

computer system. Furthermore, it will examine the diverse applications of 

the Control Unit in various contexts of computer science, such as personal 

computers, laptops, modern devices, and the rapidly evolving Internet of 

Things (IoT). By understanding the importance and role of the Control 

Unit, you can appreciate its impact on shaping the future of computing 

technology. 

5.0 SUMMARY 

A control unit, or CU, is circuitry within a computer’s processor that 

directs operations. It instructs the memory, logic unit, and both output and 

input devices of the computer on how to respond to the program’s 
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instructions. CPUs and GPUs are examples of devices that use control 

units. 

The Control Unit has a significant role within a computer system, which 

includes: 

• Fetching instructions from memory 

• Decoding instructions to determine what operation to perform 

• Controlling and coordinating the execution of instructions 

• Managing data flow between various units of the computer 

• Monitoring and regulating the synchronization of input and output 

devices 

6.0 TUTOR MARKED ASSIGNMENT 

1. Explain Control Unit 

2. List and briefly explain the types of control unit 

7.1 Possible Answers to Self-Assessment Exercises 

 

Self-Assessment Exercise 1 

1. C 

2. B 

3. B 
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MODULE 4   INSTRUCTION SET ARCHITECTURE 

 

Unit 1  General Overview of Instruction Set Architecture                 

Unit 2     Instruction Cycle 
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3.0 Main content 
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3.4 Intruction Format 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor marked assignment 

7.0 References/ Further Reading 

 

1.0 INTRODUCTION 

An Instruction Set Architecture (ISA) is part of the abstract model of a 

computer that defines how the CPU is controlled by the software. The 

ISA acts as an interface between the hardware and the software, 

specifying both what the processor is capable of doing as well as how it 

gets done. The ISA provides the only way through which a user is able to 

interact with the hardware. It can be viewed as a programmer’s manual 

because it’s the portion of the machine that’s visible to the assembly 

language programmer, the compiler writer, and the application 

programmer. 

The ISA defines the supported data types, the registers, how the hardware 

manages main memory, key features (such as virtual memory), which 

instructions a microprocessor can execute, and the input/output model of 

multiple ISA implementations. The ISA can be extended by adding 

instructions or other capabilities, or by adding support for larger addresses 

and data values. 

 

2.0 OBJECTIVES 

At the end of this unit, you should be able to 

Understand the importance of the instruction set architecture,  

Discuss the features that need to be considered when designing the 

instruction set architecture. 
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3.1 Instruction Set Overview 

We’ve already seen that the computer architecture course consists of two 

components – the instruction set architecture and the computer 

organization itself. The ISA specifies what the processor is capable of 

doing and the ISA, how it gets accomplished. So the instruction set 

architecture is the interface between your hardware and the software. The 

only way that you can interact with the hardware is the instruction set of 

the processor. To command the computer, you need to speak its language 

and the instructions are the words of a computer’s language and the 

instruction set is basically its vocabulary. Unless you know the 

vocabulary and you have a very good vocabulary, you cannot gain good 

benefits out of the machine. ISA is the portion of the machine which is 

visible to either the assembly language programmer or a compiler writer 

or an application programmer. It is the only interface that you have, 

because the instruction set architecture is the specification of what the 

computer can do and the machine has to be fabricated in such a way that 

it will execute whatever has been specified in your ISA. The only way 

that you can talk to your machine is through the ISA. This gives you an 

idea of the interface between the hardware and software. 

 Let us assume you have a high-level program written in C which is 

independent of the architecture on which you want to work. This high-

level program has to be translated into an assembly language program 

which is specific to a particular architecture. Let us say you find that this 

consists of a number of instructions like LOAD, STORE, ADD, etc., 

where, whatever you had written in terms of high-level language now 

have been translated into a set of instructions which are specific to the 

specific architecture. All these instructions that are being shown here are 

part of the instruction set architecture of the MIPS architecture. These are 

all English like and this is not understandable to the processor because the 

processor is after all made up of digital components which can understand 

only zeros and ones. So this assembly language will have to be finely 

translated into machine language, object code which consists of zeros and 

ones. So the translation from your high-level language to your assembly 

language and the binary code will have to be done with the compiler and 

the assembler. 

 We shall look at the instruction set features, and see what will go into the 

zeros and ones and how to interpret the zeros and ones, as data, 

instructions, or addresses. The ISA that is designed should last through 

many implementations, it should have portability, it should have 

compatibility, it should be used in many different ways so it should have 

generality and it should also provide convenient functionality to 

other levels. The taxonomy of ISA is given below. 

 3.2 Taxonomy 

 ISAs differ based on the internal storage in a processor. Accordingly, the 

ISA can be classified as follows, based on where the operands are stored 

and whether they are named explicitly or implicitly: 
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 Single accumulator organization, which names one of the general 

purpose registers as the accumulator and uses it to necessarily store one 

of the operands. This indicates that one of the operands is implied to be 

in the accumulator and it is enough if the other operand is specified along 

with the instruction. 

General register organization, which specifies all the operands explicitly. 

Depending on whether the operands are available in memory or registers, 

it can be further classified as 

– Register – register, where registers are used for storing operands. Such 

architectures are also called load–store architectures, as only load and 

store instructions can have memory operands. 

           –  Register – memory, where one operand is in a register and the 

other one in memory. 

            – Memory – memory, where all the operands are specified as 

memory operands. 

Stack organization, where the operands are put into the stack and the 

operations are carried out on the top of the stack. The operands are 

implicitly specified here. 

 Let us assume you have to perform the operation A = B + C, where all 

three operands are memory operands. In the case of an accumulator-based 

ISA, where we assume that one of the general-purpose registers is being 

designated as an accumulator and one of the operands will always be 

available in the accumulator, you have to initially load one operand into 

the accumulator and the ADD instruction will only specify the operand’s 

address. In the GPR-based ISA, you have three different classifications. 

In the register memory ISA, One operand has to be moved into any 

register and the other one can be a memory operand. In the register–

register ISA, both operands will have to be moved to two registers and 

the ADD instruction will only work on registers. The memory–memory 

ISA permits both memory operands. So you can directly add. In a stack-

based ISA, you’ll have to first of all push both operands onto the stack 

and then simply give an add instruction which will add the top two 

elements of the stack and then store the result in the stack. So you can see 

from these examples that you have different ways of executing the same 

operation, and it obviously depends upon the ISA. Among all these ISAs, 

It is the register – register ISA that is very popular and used in all RISC 

architectures. 

  

We shall now look at what are the different features that need to be 

considered when designing the instruction set architecture. They are: 

Types of instructions (Operations in the Instruction set) 

Types and sizes of operands 

Addressing Modes 

Addressing Memory 

Encoding and Instruction Formats 

Compiler-related issues 
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 First of all, you have to decide on the types of instructions, i.e. what are 

the various instructions that you want to support in the ISA. The tasks 

carried out by a computer program consisting of a sequence of small steps, 

such as multiplying two numbers, moving data from a register to a 

memory location, testing for a particular condition like zero, reading a 

character from the input device or sending a character to be displayed to 

the output device, etc.. A computer must have the following types of 

instructions: 

• Data transfer instructions 

• Data manipulation instructions 

• Program sequencing and control instructions 

• Input and output instructions 

 Data transfer instructions perform data transfer between the various 

storage places in the computer system, viz. registers, memory, and I/O. 

Since, both the instructions as well as data are stored in memory, the 

processor needs to read the instructions and data from memory. After 

processing, the results must be stored in memory. Therefore, two basic 

operations involving the memory are needed, 

namely, Load (or Read or Fetch) and Store (or Write). The Load 

operation transfers a copy of the data from the memory to the processor 

and the Store operation moves the data from the processor to memory. 

Other data transfer instructions are needed to transfer data from one 

register to another or from/to I/O devices and the processor. 

  

Data manipulation instructions perform operations on data and indicate 

the computational capabilities for the processor. These operations can be 

arithmetic operations, logical operations or shift operations. Arithmetic 

operations include addition (with and without carry), subtraction (with 

and without borrow), multiplication, division, increment, decrement and 

finding the complement of a number. The logical and bit manipulation 

instructions include AND, OR, XOR, Clear carry, set carry, etc. Similarly, 

you can perform different types of shift and rotate operations. 

 We generally assume a sequential flow of instructions. That is, 

instructions that are stored in consequent locations are executed one after 

the other. However, you have program sequencing and control 

instructions that help you change the flow of the program. This is best 

explained with an example. Consider the task of adding a list 

of n numbers. A possible sequence is given below. 

Move DATA1, R0 

Add DATA2, R0 

Add DATA3, R0 

Add DATAn, R0 

Move R0, SUM 

 The addresses of the memory locations containing the n numbers are 

symbolically given as DATA1, DATA2, . . , DATAn, and a separate Add 

instruction is used to add each Databer to the contents of register R0. After 
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all the numbers have been added, the result is placed in memory location 

SUM. Instead of using a long list of Add instructions, it is possible to 

place a single Add instruction in a program loop, as shown below: 

  

Move N, R1 

Clear R0 

LOOP Determine address of “Next” number and add “Next” number to 

R0 

Decrement R1 

Branch > 0, LOOP 

Move R0, SUM 

 The loop is a straight-line sequence of instructions executed as many 

times as needed. It starts at location LOOP and ends at the instruction 

Branch>0. During each pass through this loop, the address of the next list 

entry is determined, and that entry is fetched and added to R0. The address 

of an operand can be specified in various ways, as will be described in the 

next section. For now, you need to know how to create and control a 

program loop. Assume that the number of entries in the list, n, is stored in 

memory location N. Register R1 is used as a counter to determine the 

number of times the loop is executed. Hence, the contents of location N 

are loaded into register R1 at the beginning of the program. Then, within 

the body of the loop, the instruction, Decrement R1 reduces the contents 

of R1 by 1 each time through the loop. The execution of the loop is 

repeated as long as the result of the decrement operation is greater than 

zero. 

 

 You should now be able to understand branch instructions. This type of 

instruction loads a new value into the program counter. As a result, the 

processor fetches and executes the instruction at this new address, called 

the branch target, instead of the instruction at the location that follows the 

branch instruction in sequential address order. The branch instruction can 

be conditional or unconditional. An unconditional branch instruction 

does a branch to the specified address irrespective of any condition. 

A conditional branch instruction causes a branch only if a specified 

condition is satisfied. If the condition is not satisfied, the PC is 

incremented in the normal way, and the next instruction in sequential 

address order is fetched and executed. In the example above, the 

instruction Branch>0 LOOP (branch if greater than 0) is a conditional 

branch instruction that causes a branch to locate LOOP if the result of the 

immediately preceding instruction, which is the decremented value in 

register R1, is greater than zero.  

This means that the loop is repeated as long as there are entries in the list 

that are yet to be added to R0. At the end of the nth pass through the loop, 

the Decrement instruction produces a value of zero, and, hence, branching 

does not occur. Instead, the Move instruction is fetched and executed. It 

moves the final result from R0 into memory location SUM. Some ISAs 
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refer to such instructions as Jumps. The processor keeps track of 

information about the results of various operations for use by subsequent 

conditional branch instructions. This is accomplished by recording the 

required information in individual bits, often called condition code flags. 

These flags are usually grouped together in a special processor register 

called the condition code register or status register. Individual condition 

code flags are set to 1 or cleared to 0, depending on the outcome of the 

operation performed. Some of the commonly used flags are: Sign, Zero, 

Overflow, and Carry.  

The call and return instructions are used in conjunction with subroutines. 

A subroutine is a self-contained sequence of instructions that performs a 

given computational task. During the execution of a program, a 

subroutine may be called to perform its function many times at various 

points in the main program. Each time a subroutine is called, a branch is 

executed to the beginning of the subroutine to start executing its set of 

instructions. After the subroutine has been executed, a branch is made 

back to the main program, through the return instruction. Interrupts can 

also change the flow of a program. A program interrupt refers to the 

transfer of program control from a currently running program to another 

service program as a result of an external or internally generated request. 

Control returns to the original program after the service program is 

executed.  

The interrupt procedure is, in principle, quite similar to a subroutine call 

except for three variations: (1) The interrupt is usually initiated by an 

internal or external signal apart from the execution of an instruction (2) 

the address of the interrupt service program is determined by the hardware 

or from some information from the interrupt signal or the instruction 

causing the interrupt; and (3) an interrupt procedure usually stores all the 

information necessary to define the state of the CPU rather than storing 

only the program counter. Therefore, when the processor is interrupted, it 

saves the current status of the processor, including the return address, the 

register contents and the status information called the Processor Status 

Word (PSW), and then jumps to the interrupt handler or the interrupt 

service routine. Upon completing this, it returns to the main program. 

Interrupts are handled in detail in the next unit on Input / Output. 

Input and Output instructions are used for transferring information 

between the registers, memory, and the input/output devices. It is possible 

to use special instructions that exclusively perform I/O transfers, or use 

memory – related instructions itself to do I/O transfers. 

Suppose you are designing an embedded processor that is meant to be 

performing a particular application, then definitely you will have to bring 

instructions that are specific to that particular application. When you’re 

designing a general-purpose processor, you only look at including all 

general types of instructions. Examples of specialized instructions may be 

media and signal processing-related instructions, say vector type of 

instructions which try to exploit the data level parallelism, where the same 
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operation of addition or subtraction is going to be done on different data 

and then you may have to look at saturating arithmetic operations, 

multiply and accumulator instructions. 

The data types and sizes indicate the various data types supported by the 

processor and their lengths. Common operand types –Half word (16 bits), 

Word (32 bits), Single Precision Floating Point (1 Word), Double 

Precision Floating Point (2 Words), Integers – two’s complement binary 

numbers, Characters usually in ASCII, Floating point numbers following 

the IEEE Standard 754 and Packed and unpacked decimal numbers. 

Self-Assessment Exercises 1 

 

Answer the following questions by choosing the most suitable option: 

 

1. What does ISA stand for? 

   A. Internal System Architecture 

   B. Instruction Set Architecture 

   C. Integrated Software Application 

   D. Input/Storage/Access 

 

2. Which ISA type is used in RISC architectures? 

   A. Accumulator-based 

   B. Stack-based 

   C. Register-register (Load-store) 

   D. Memory-memory 

 

3. What are the main categories of instructions in an ISA? 

   A. Data transfer, data manipulation, program control, I/O 

   B. Fetch, decode, execute, store 

   C. Read, write, calculate, display 

   D. Input, process, output, feedback 

 

3.3 Addressing Modes 

 The operation field of an instruction specifies the operation to be 

performed. This operation must be executed on some data that is given 

straight away or stored in computer registers or memory words. The way 

the operands are chosen during program execution is dependent on 

the addressing mode of the instruction. The addressing mode specifies a 

rule for interpreting or modifying the address field of the instruction 

before the operand is referenced. In this section, you will learn the most 

important addressing modes found in modern processors. 

 Computers use addressing mode techniques to accommodate one or both 

of the following: 

 1. To give programming versatility to the user by providing such facilities 

as pointers to memory, counters for loop control, indexing of data, and 

program relocation. 

 2. To reduce the number of bits in the addressing field of the instruction. 
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 When you write programs in a high-level language, you use constants, 

local and global variables, pointers, and arrays. When translating a high-

level language program into assembly language, the compiler must be 

able to implement these constructs using the facilities provided in the 

instruction set of the computer in which the program will be run. The 

different ways in which the location of an operand is specified in an 

instruction are referred to as addressing modes. Variables and constants 

are the simplest data types and are found in almost every computer 

program. In assembly language, a variable is represented by allocating a 

register or a memory location to hold its value. 

 Register mode — The operand is the contents of a processor register; the 

name (address) of the register is given in the instruction. 

  

Absolute mode — The operand is in a memory location; the address of 

this location is given explicitly in the instruction. This is also 

called Direct. 

 Address and data constants can be represented in assembly language 

using the Immediate mode. 

 Immediate mode — The operand is given explicitly in the instruction. 

For example, the instruction Move 200immediate, R0 places the value 

200 in register R0. Clearly, the Immediate mode is only used to specify 

the value of a source operand. A common convention is to use the sharp 

sign (#) in front of the value to indicate that this value is to be used as an 

immediate operand. Hence, we write the instruction above in the form 

Move #200, R0. Constant values are used frequently in high-level 

language programs. For example, the statement A = B + 6 contains the 

constant 6. Assuming that A and B have been declared earlier as variables 

and may be accessed using the Absolute mode, this statement may be 

compiled as follows: 

Move B, R1 

Add #6, R1 

Move R1, A 

Constants are also used in assembly language to increment a counter, test 

for some bit pattern, and so on. 

 Indirect mode — In the addressing modes that follow, the instruction 

does not give the operand or its address explicitly. Instead, it provides 

information from which the memory address of the operand can be 

determined. We refer to this address as the effective address (EA) of the 

operand. In this mode, the effective address of the operand is the contents 

of a register or memory location whose address appears in the instruction. 

We denote indirection by placing the name of the register or the memory 

address given in the instruction in parentheses. For example, consider the 

instruction, Add (R1), R0. To execute the Add instruction, the processor 

uses the value in register R1 as the effective address of the operand. It 

requests a read operation from the memory to read the contents of this 

location. The value read is the desired operand, which the processor adds 
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to the contents of register R0. Indirect addressing through a memory 

location is also possible as indicated in the instruction Add (A), R0. In 

this case, the processor first reads the contents of memory location A, then 

requests a second read operation using this value as an address to obtain 

the operand. The register or memory location that contains the address of 

an operand is called a pointer. Indirection and the use of pointers are 

important and powerful concepts in programming. Changing the contents 

of location A in the example fetches different operands to add to register 

R0. 

 Index mode — The next addressing mode you learn provides a different 

kind of flexibility for accessing operands. It is useful in dealing with lists 

and arrays. In this mode, the effective address of the operand is generated 

by adding a constant value (displacement) to the contents of a register. 

The register used may be either a special register provided for this 

purpose, or may be any one of the general-purpose registers in the 

processor. In either case, it is referred to as an index register. We indicate 

the Index mode symbolically as X(Ri ), where X denotes the constant 

value contained in the instruction and Ri is the name of the register 

involved. The effective address of the operand is given by EA = X + [Ri]. 

The contents of the index register are not changed in the process of 

generating the effective address. In an assembly language program, the 

constant X may be given either as an explicit number or as a symbolic 

name representing a numerical value. When the instruction is translated 

into machine code, the constant X is given as a part of the instruction and 

is usually represented by fewer bits than the word length of the computer. 

Since X is a signed integer, it must be sign-extended to the register length 

before being added to the contents of the register. 

 Relative mode — The above discussion defined the Index mode using 

general-purpose processor registers. A useful version of this mode is 

obtained if the program counter, PC, is used instead of a general-purpose 

register. Then, X (PC) can be used to address a memory location that is X 

bytes away from the location presently pointed to by the program counter. 

Since the addressed location is identified as “relative” to the program 

counter, which always identifies the current execution point in a program, 

the name Relative mode is associated with this type of addressing. In this 

case, the effective address is determined by the Index mode using the 

program counter in place of the general-purpose register Ri. This 

addressing mode is generally used with control flow instructions. 

 Though this mode can be used to access data operands. But, its most 

common use is to specify the target address in branch instructions. An 

instruction such as Branch > 0 LOOP, which we discussed earlier, causes 

program execution to go to the branch target location identified by the 

name LOOP if the branch condition is satisfied. This location can be 

computed by specifying it as an offset from the current value of the 

program counter. Since the branch target may be either before or after the 

branch instruction, the offset is given as a signed number. Recall that 
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during the execution of an instruction, the processor increments the PC to 

point to the next instruction. Most computers use this updated value in 

computing the effective address in the Relative mode. 

The two modes described next are useful for accessing data items in 

successive locations in the memory. 

 Autoincrement mode — The effective address of the operand is the 

contents of a register specified in the instruction. After accessing the 

operand, the contents of this register are automatically incremented to 

point to the next item in a list. We denote the Autoincrement mode by 

putting the specified register in parentheses, to show that the contents of 

the register are used as the effective address, followed by a plus sign to 

indicate that these contents are to be incremented after the operand is 

accessed. Thus, the Autoincrement mode is written as (Ri )+. 

 Autodecrement mode — As a companion for the Autoincrement mode, 

another useful mode accesses the items of a list in the reverse order. In 

the autodecrement mode, the contents of a register specified in the 

instruction are first automatically decremented and are then used as the 

effective address of the operand. We denote the Autodecrement mode by 

putting the specified register in parentheses, preceded by a minus sign to 

indicate that the contents of the register are to be decremented before 

being used as the effective address. Thus, we write – (Ri ). In this mode, 

operands are accessed in descending address order. You may wonder why 

the address is decremented before it is used in the Autodecrement mode 

and incremented after it is used in the Autoincrement mode. The main 

reason for this is that these two modes can be used together to implement 

a stack. 

3.4 Instruction Formats 

The previous sections have shown you that the processor can execute 

different types of instructions and there are different ways of specifying 

the operands. Once all this is decided, this information has to be presented 

to the processor in the form of an instruction format. The number of bits 

in the instruction is divided into groups called fields. The most common 

fields found in instruction formats are 

 1. An operation code field that specifies the operation to be performed. 

The number of bits will indicate the number of operations that can be 

performed. 

 2. An address field that designates a memory address or a processor 

register. The number of bits depends on the size of memory or the number 

of registers. 

 3. A mode field that specifies the way the operand or the effective address 

is determined. This depends on the number of addressing modes 

supported by the processor. 

 The number of address fields may be three, two or one depending on the 

type of ISA used. Also, observe that, based on the number of operands 

that are supported and the size of the various fields, the length of the 

instructions will vary. Some processors fit all the instructions into a single 



IFT 212        COMPUTER ARCHITECTURE AND ORGANIZATION 

90 

sized format, whereas others make use of formats of varying sizes. 

Accordingly, you have a fixed format or a variable format. 

 Interpreting memory addresses – you basically have two types of 

interpretation of the memory addresses – Big endian arrangement and the 

little endian arrangement. Memories are normally arranged as bytes and 

a unique address of a memory location is capable of storing 8 bits of 

information. But when you look at the word length of the processor, the 

word length of the processor may be more than one byte. Suppose you 

look at a 32-bit processor, it is made up of four bytes. These four bytes 

span over four memory locations. When you specify the address of a word 

how you would specify the address of the word – are you going to specify 

the address of the most significant byte as the address of the word (big 

end) or specify the address of the least significant byte (little end) as the 

address of the word. That distinguishes between a big endian arrangement 

and a little endian arrangement. IBM, Motorola, HP follow the big endian 

arrangement and Intel follows the little endian arrangement. Also, when 

a data spans over different memory locations, and if you try to access a 

word which is aligned with the word boundary, we say there is an 

alignment. If you try to access the words not starting at a word boundary, 

you can still access, but they are not aligned. Whether there is support to 

access data that is misaligned is a design issue. Even if you’re allowed to 

access data that is misaligned, it normally takes more number of memory 

cycles to access the data. 

 Finally looking at the role of compilers the compiler has a lot of role to 

play when you’re defining the instruction set architecture. Gone are the 

days where people thought that compilers and architectures are going to 

be independent of each other. Only when the compiler knows the internal 

architecture of the processor it’ll be able to produce optimised code. So 

the architecture will have to expose itself to the compiler and the compiler 

will have to make use of whatever hardware is exposed. The ISA should 

be compiler friendly. The basic ways in which the ISA can help the 

compiler are regularity, orthogonality and the ability to weigh different 

options. 

Finally, all the features of an ISA are discussed with respect to the 80×86 

and MIPS. 

 1. Class of ISA: Nearly all ISAs today are classified as general-purpose 

register architectures, where the operands are either registers or memory 

locations. The 80×86 has 16 general-purpose registers and 16 that can 

hold floating point data, while MIPS has 32 general-purpose and 32 

floating-point registers. The two popular versions of this class 

are register-memory ISAs such as the 80×86, which can access memory 

as part of many instructions, and load-store ISAs such as MIPS, which 

can access memory only with load or store instructions. All recent ISAs 

are load-store. 

 2. Memory addressing: Virtually all desktop and server computers, 

including the 80×86 and MIPS, use byte addressing to access memory 
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operands. Some architectures, like MIPS, require that objects must 

be aligned. An access to an object of size s bytes at byte address A is 

aligned if A mod s = 0. The 80×86 does not require alignment, but 

accesses are generally faster if operands are aligned. 

 3. Addressing modes: In addition to specifying registers and constant 

operands, addressing modes specify the address of a memory object. 

MIPS addressing modes are Register, Immediate (for constants), and 

Displacement, where a constant offset is added to a register to form the 

memory address. The 80×86 supports those three plus three variations of 

displacement: no register (absolute), two registers (based indexed with 

displacement), two registers where one register is multiplied by the size 

of the operand in bytes (based with scaled index and displacement). It has 

more like the last three, minus the displacement field: register indirect, 

indexed, and based with scaled index. 

 4. Types and sizes of operands: Like most ISAs, MIPS and 80×86 

support operand sizes of 8-bit (ASCII character), 16-bit (Unicode 

character or half word), 32-bit (integer or word), 64-bit (double word or 

long integer), and IEEE 754 floating point in 32-bit (single precision) and 

64-bit (double precision). The 80×86 also supports 80-bit floating point 

(extended double precision). 

 5. Operations:  The general categories of operations are data transfer, 

arithmetic logical, control, and floating point. MIPS is a simple and easy-

to-pipeline instruction set architecture, and it is representative of the RISC 

architectures being used in 2006. The 80×86 has a much richer and larger 

set of operations. 

 6. Control flow instructions: Virtually all ISAs, including 80×86 and 

MIPS, support conditional branches, unconditional jumps, procedure 

calls, and returns. Both use PC-relative addressing, where the branch 

address is specified by an address field that is added to the PC. There are 

some small differences. MIPS conditional branches (BE, BNE, etc.) test 

the contents of registers, while the 80×86 branches (JE, JNE, etc.) test 

condition code bits set as side effects of arithmetic/logic operations. MIPS 

procedure call (JAL) places the return address in a register, while the 

80×86 call (CALLF) places the return address on a stack in memory. 

7. Encoding an ISA : There are two basic choices for encoding: fixed 

length and variable length. All MIPS instructions are 32 bits long, which 

simplifies instruction decoding (shown below). The 80×86 encoding is 

variable length, ranging from 1 to 18 bytes. Variable-length instructions 

can take less space than fixed-length instructions, so a program compiled 

for the 80×86 is usually smaller than the same program compiled for 

MIPS. Note that the choices mentioned above will affect how the 

instructions are encoded into a binary representation. For example, the 

number of registers and the number of addressing modes both have a 

significant impact on the size of instructions, as the register field and 

addressing mode field can appear many times in a single instruction. 

some types of instruction sets? 
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The various types of instruction sets include the following: 

Complex instruction set computer. CISC processors have an additional 

microcode or microprogramming layer where instructions act as small 

programs. Programmable instructions are stored in fast memory and can 

be updated. More instructions are included in CISC instruction sets than 

in other types of instruction sets. A single instruction can initiate multiple 

actions by the computer, such as a single add command launching 

multiple memory access load and store instructions. 

Reduced instruction set computer. RISC architecture has hard-wired 

control. It does not require a microcode but has a greater base instruction 

set. RISC also uses a smaller and more compact instruction set with a 

fixed instruction format. RISC processors are designed to process faster 

and more efficiently. 

Enhancement instruction sets. These instruction types are more familiar 

because they are often used in marketing CPUs. Examples of this go back 

to the 166-megahertz Intel Pentium with Multimedia Extensions (MMX) 

technologies. It was introduced in 1996 and marketed with enhanced Intel 

CPU multimedia performance. MMX refers to the extended instruction 

set. 

 

Self-Assessment Exercises 2 

 

Fill in the gaps in the sentences below with the most suitable words: 

 

1. The ________ mode specifies that the operand is given explicitly in the 

instruction. 

 

2. In ________ mode, the effective address is the contents of a register 

specified in the instruction. 

 

3. The ________ addressing mode uses the program counter to address 

memory locations relative to the current instruction. 

 

4.0 CONCLUSION 

Basically means that an ISA describes the design of a Computer in 

terms of the basic operations it must support. The ISA is not concerned 

with the implementation-specific details of a computer. It is only 

concerned with the set or collection of basic operations the computer must 

support. For example, the AMD Athlon and the Core 2 Duo processors 

have entirely different implementations but they support more or less the 

same set of basic operations as defined in the x86 Instruction Set.  

 

5.0 SUMMARY 

An instruction set is a group of commands for a CPU in machine 

language. The term can refer to all possible instructions for a CPU or a 

subset of instructions to enhance its performance in certain situations. To 
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summarize, we have looked at the taxonomy of ISAs and the various 

features that need to be decided while designing the ISA. We also looked 

at example ISAs, the MIPS ISA and the 80×86 ISA. 

 

6.0 Tutor marked assignment 

1. What is a instruction set? 

 

         6.1 Possible Answers to Self-Assessment Exercises 

 

Self-Assessment Exercise 1 

1. B 

2. C 

3. A 

 

Self-Assessment Exercise 2 

1. Immediate 

2. Register 

3. Relative 
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1.0 INTRODUCTION 

The instruction cycle is a basic computer system that deals with the central 

processor unit's core operations. It is also known as the fetch-decode-

execute cycle, and is a fundamental concept in computer architecture and 

microprocessor operation. It represents the series of steps that a 

computer's central processing unit (CPU) goes through to execute a 

single-machine instruction. 

 

2.0 OBJECTIVES 

At the end of this unit, you should be able to  

understand the instruction cycle. 

 

3.1 Instruction Cycle 

A program residing in the memory unit of a computer consists of a 

sequence of instructions. These instructions are executed by the processor 

by going through a cycle for each instruction. An instruction cycle, also 

known as the fetch-decode-execute cycle is the basic operational process 

of a computer. This process is repeated continuously by the CPU from 

boot up to shut down of the computer. 

In a basic computer, each instruction cycle consists of the following 

phases: 

Fetch instruction from memory. 

Decode the instructions. 

Read the effective address from memory. 

Execute the instruction. 
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During this phase, the computer system boots up and the Operating 

System loads into the central processing unit's main memory. It begins 

when the computer system starts. 

Following are the steps that occur during an instruction cycle: 

1. Fetch the Instruction 

The first phase is instruction retrieval. Each instruction executed in a 

central processing unit uses the fetch instruction. During this phase, the 

central processing unit sends the PC to MAR and then the READ 

instruction to a control bus. After sending a read instruction on the data 

bus, the memory returns the instruction that was stored at that exact 

address in the memory. The CPU then copies data from the data bus into 

MBR, which it then copies to registers. The pointer is incremented to the 

next memory location, allowing the next instruction to be fetched from 

memory. The instruction is fetched from memory address that is stored in 

PC (Program Counter) and stored in the instruction register IR. At the end 

of the fetch operation, PC is incremented by 1 and it then points to the 

next instruction to be executed. 

2. Decode the Instruction 

The second phase is instruction decoding. During this step, the CPU 

determines which instruction should be fetched from the instruction and 

what action should be taken on the instruction. The instruction's opcode 

is also retrieved from memory, and it decodes the related operation that 

must be performed for the instruction. The instruction in the IR is 

executed by the decoder. 

3. Read the Effective Address 

The third phase is the reading of an effective address. The operation's 

decision is made during this phase. Any memory-type operation or non-

memory-type operation can be used. Direct memory instruction and 
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indirect memory instruction are the two types of memory instruction 

available. If the instruction has an indirect address, the effective address 

is read from the memory. Otherwise, operands are directly read in case of 

immediate operand instruction. 

4. Execute the Instruction 

The last step is to carry out the instructions. The instruction is finally 

carried out at this stage. The instruction is carried out, and the result is 

saved in the register. The CPU gets prepared for the execution of the next 

instruction after the completion of each instruction. The execution time of 

each instruction is calculated, and this information is used to determine 

the processor's processing speed. The Control Unit passes the information 

in the form of control signals to the functional unit of the CPU. The result 

generated is stored in the main memory or sent to an output device. 

The cycle is then repeated by fetching the next instruction. Thus in this 

way, the instruction cycle is repeated continuously. 

 

 
 

The sequence of operations performed by the CPU during its execution 

of instructions is presented in the figure. As long as there are instructions 

to execute, the next instruction is fetched from the main memory. The 

instruction is executed based on the operation specified in the opcode field 

of the instruction. After the instruction execution, a test is made to 

determine whether an interrupt has occurred. An interrupt handling 

routine needs to be invoked in case of an interrupt. 
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3.2 Different Instruction Cycles 

The concept of instruction cycles is integral to understanding how a 

computer's central processing unit (CPU) executes instructions. Here's an 

explanation of each of these cycles: 

Fetch Cycle 

Description: The fetch cycle is the initial stage of the instruction cycle. 

It involves retrieving the next instruction from memory. 

Operation: The CPU uses the program counter (PC) to access the 

memory location where the next instruction is stored. The instruction is 

fetched and placed in the instruction register (IR). 

Purpose: This cycle ensures that the CPU has the next instruction ready 

for decoding and execution. 

Indirect Cycle 

Description: The indirect cycle is sometimes required when instructions 

involve accessing memory locations that contain addresses or pointers to 

the actual data. 

Operation: During this cycle, the CPU may use an address obtained from 

the previous instruction to access another memory location, which holds 

the data or another address to be used in the next cycle. 

Purpose: The indirect cycle enables the CPU to follow memory 

references and retrieve the actual data required for execution. 

Execute Cycle 

Description: The execute cycle is where the central processing unit 

performs the operation specified by the decoded instruction. 

Operation: The CPU carries out arithmetic computations, logical 

operations, data transfers, or any other actions as dictated by the 

instruction. This may involve accessing data from registers or memory, 

performing calculations, and updating registers or memory locations. 

Purpose: The execution stage accomplishes the intended operation and is 

where the actual work of the instruction takes place. 

Interrupt Cycle 

Description: The interrupt cycle comes into play when an external event 

or condition triggers an interrupt, causing the CPU to temporarily suspend 

its current execution to handle the interrupt request. 

Operation: The CPU saves its current state (program counter and other 

relevant information) before jumping to an interrupt service routine (ISR). 

After servicing the interrupt, the CPU may restore its state and continue 

execution. 

Purpose: Interrupt cycles enable a CPU to respond to external events or 

asynchronous inputs promptly without losing important data or program 

context. 

Self-Assessment Exercises 1 

 

Answer the following questions by choosing the most suitable option: 

 

1. How many basic phases does an instruction cycle consist of? 
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   A. Two (fetch and execute) 

   B. Three (fetch, decode, execute) 

   C. Four (fetch, decode, execute, store) 

   D. Five (fetch, decode, read, execute, store) 

 

2. What happens during the decode phase? 

   A. The instruction is retrieved from memory 

   B. The CPU determines what operation to perform 

   C. The instruction is executed 

   D. The result is stored in memory 

 

3. Which cycle handles external events that interrupt normal processing? 

   A. Fetch Cycle 

   B. Execute Cycle 

   C. Indirect Cycle 

   D. Interrupt Cycle 

 

3.3 Uses of Different Instruction Cycles 

The different instruction cycles (fetch, indirect, execute, and interrupt) in 

a computer's operation have different purposes and applications, ensuring 

efficient and responsive processing. Here are the uses of each instruction 

cycle: 

Fetch Cycle 

Use: Retrieving the next instruction from memory. 

Application: Essential for the sequential execution of program 

instructions, ensuring the CPU has the next instruction ready for decoding 

and execution. 

Example: Fetching the opcode of the next instruction from memory to be 

decoded and executed. 

Indirect Cycle 

Use: Handling instructions that involve accessing memory locations 

containing addresses or pointers. 

Application: Facilitates memory referencing, allowing the CPU to 

navigate through multiple levels of indirection to access the actual data or 

instructions. 

Example: Accessing data through a memory location that contains a 

pointer to the actual data's location. 

Execute Cycle 

Use: Performing the operation specified by the decoded instruction. 

Application: Where the actual computation or data manipulation occurs, 

making it the heart of instruction execution. 

Example: Carrying out arithmetic calculations, logical operations, data 

transfers, or any actions dictated by the instruction. 

Interrupt Cycle 

Use: Handling external events or requests for interrupting the CPU's 

current execution. 
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Application: Ensures prompt response to hardware or software events 

such as hardware interrupts, system calls, or exceptions, allowing the 

CPU to temporarily switch tasks. 

Example: Responding to a keyboard input interrupt, saving the CPU's 

current state, and invoking an interrupt service routine (ISR). 

Why do we Need an Instruction Cycle? 

The instruction cycle of a computer system is necessary for understanding 

the flow of instructions and the execution of an instruction in a computer 

processor. 

It is responsible for the complete flow of instructions from the start of the 

computer system through its shutdown. The instruction cycle helps to 

understand the internal flow of the central processing unit, allowing any 

faults to be immediately resolved. 

It deals with a computer processor's basic operations and demands a 

detailed understanding of the many steps involved. 

All instructions for the computer processor system follow the fetch-

decode-execute cycle. 

Importance of Instruction Cycle 

The instructions are the basic activities conducted in the main memory of 

the central processing unit. That is why they are so crucial to the processor 

system. 

It's a set of stages that helps us to understand how instruction flows. The 

instruction cycle allows the computer processor to see the sequence of 

instructions from start to finish. 

It is common for all instruction sets to require a thorough understanding 

to perform all operations efficiently. 

The processing time of a programme can be easily calculated using the 

instruction cycle, which aids in determining the processor's speed. 

The processor's speed determines how many instructions can be executed 

simultaneously in the central processing unit. 

Advantages of Instruction Cycle 

Efficiency: The fetch-decode-execute cycle, consisting of instruction 

cycles, allows CPUs to execute instructions sequentially and efficiently, 

ensuring that each instruction is processed in a well-defined manner. 

Flexibility: CPUs can handle a wide range of instructions, from 

arithmetic operations to data transfers, by following the execution cycle 

for each instruction type. 

Control Flow: The instruction cycle controls the flow of program 

execution, advancing to the next instruction after each cycle, allowing for 

precise execution and program control. 

Responsiveness: CPUs can quickly respond to external events and 

handle interrupts or exceptions using the interrupt cycle, making them 

versatile and suitable for various tasks. 

Disadvantages of Instruction Cycle 

Clock Speed: The speed of instruction execution is often constrained by 

the system's clock speed, limiting the number of instructions that can be 
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executed in a given period. 

Pipeline Stalls: In pipelined architectures, where multiple instructions 

are processed simultaneously, issues like pipeline stalls can lead to 

inefficiencies if instructions depend on one another. 

Resource Limitations: CPU execution is subject to resource limitations, 

such as the availability of registers, memory access times, and cache sizes, 

which can affect performance. 

Instruction Set Limitations: CPUs are limited by their instruction set 

architectures (ISAs), which may not include certain specialized 

instructions or features required for specific applications. 

Complexity: The fetch-decode-execute cycle is an intricate process, and 

the complexity of instruction execution can lead to design challenges and 

potential errors in the processor's microarchitecture.  

Input-Output Configuration 

In computer architecture, input-output devices act as an interface between 

the machine and the user. 

Instructions and data stored in the memory must come from some input 

device. The results are displayed to the user through some output device. 

The following block diagram shows the input-output configuration for a 

basic computer. 

 

 

 
 

 

o The input-output terminals send and receive information. 

o The amount of information transferred will always have eight bits 

of an alphanumeric code. 

o The information generated through the keyboard is shifted into an 

input register 'INPR'. 

o The information for the printer is stored in the output register 

'OUTR'. 

o Registers INPR and OUTR communicate with a communication 
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interface serially and with the AC in parallel. 

o The transmitter interface receives information from the keyboard 

and transmits it to INPR. 

o The receiver interface receives information from OUTR and sends 

it to the printer serially. 

4.0 CONCLUSION 

we have thoroughly discussed on Instruction Cycle in Computer 

Architecture. We also learned about different instruction cycles, the uses 

of different instruction cycles, their needs, and their importance. Later in 

the end we discussed the advantages and disadvantages of the instruction 

Cycle in Computer Architecture.  

 

5.0 SUMMARY 

In computer organization, an instruction cycle, also known as a fetch-

decode-execute cycle, is the basic operation performed by a CPU to 

execute an instruction. The instruction cycle consists of several steps, 

each of which performs a specific function in the execution of the 

instruction. The major steps in the instruction cycle are: 

Fetch: In the fetch cycle, the CPU retrieves the instruction from memory. 

The instruction is typically stored at the address specified by the program 

counter (PC). The PC is then incremented to point to the next instruction 

in memory. 

Decode: In the decode cycle, the CPU interprets the instruction and 

determines what operation needs to be performed. This involves 

identifying the opcode and any operands that are needed to execute the 

instruction. 

Execute: In the execute cycle, the CPU performs the operation specified 

by the instruction. This may involve reading or writing data from or to 

memory, performing arithmetic or logic operations on data, or 

manipulating the control flow of the program. 

Some additional steps may be performed during the instruction cycle, 

depending on the CPU architecture and instruction set: 

Fetch operands: In some CPUs, the operands needed for an instruction 

are fetched during a separate cycle before the execute cycle. This is called 

the fetch operands cycle. 

Store results: In some CPUs, the results of an instruction are stored 

during a separate cycle after the execute cycle. This is called the store 

results cycle. 

Interrupt handling: In some CPUs, interrupt handling may occur during 

any cycle of the instruction cycle. An interrupt is a signal that the CPU 

receives from an external device or software that requires immediate 

attention. When an interrupt occurs, the CPU suspends the current 

instruction and executes an interrupt handler to service the interrupt. 
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6.0 Tutor marked assignment 

1. What is the Instruction cycle? 

2. What is five stage instruction cycle? 

3. Why is instruction cycle important? 

4. What are the steps of the instructional cycle? 

 

7.1 Possible Answers to Self-Assessment Exercises 

 

Self-Assessment Exercise 1 

1. C 

2. B 

3. D 
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Computer Architecture – A Quantitative Approach , John L. Hennessy 

and David A. Patterson, 5th.Edition, Morgan Kaufmann, Elsevier, 2011. 

Computer Organization and Design – The Hardware / Software Interface, 

David A. Patterson and John L. Hennessy, 4th.Edition, Morgan 

Kaufmann, Elsevier, 2009. 

Computer Organization, Carl Hamacher, Zvonko Vranesic and Safwat 

Zaky, 5th.Edition, McGraw-Hill Higher Education, 2011. 
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MODULE 5 THE MEMORY SYSTEMS 
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1.0 INTRODUCTION 

A computer is an electronic device and that accepts data, processes that 

data, and gives the desired output. It performs programmed computation 

with accuracy and speed. In other words, the computer takes data as input 

and stores the data/instructions in the memory (use them when required). 

After processing the data, it converts into information. Finally, gives the 

output. Here, input refers to the raw data that we want the machine to 

process and return to us as a result, output refers to the response that the 

machine provides in response to the raw data entered and the processing 

of data may involve analyzing, searching, distributing, storing data, etc. 

Thus, we can also call a computer data processing system. 

 

2.0 OBJECTIVES 

At the end of this unit, you should be able to 

- Understand the memory characteristics and organization 

- Explain the types of memory 

 

3.1 Memory Characteristics and Organization 

Memory is one of the important subsystems in a Computer. It is a volatile 

storage system that stores Instructions and Data. Unless the program gets 

loaded in memory in executable form, the CPU cannot execute it. CPU 

Interacts closely with memory for execution. 

There are many other storage systems in a computer that share the 

characteristics of memory. So why have so many storage systems? 

Everyone desires to have very large, super fast, and cheap storage. 

Storage cost varies depending on the type of storage. Memory devices are 

hierarchically connected to design a cost-effective memory. When we say 

memory, we refer to the main memory, commonly referred to as RAM. 
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Memory (Storage Device) Characteristics 

Although Memory and Storage devices share many characteristics, there 

is uniqueness in each one of them. Some of the most important 

characteristics are as below: 

Access Time - The access time depends on the physical nature of the 

storage medium and the access mechanisms used. Refer to Figure 1. At 

the bottom is access time in Milliseconds, while at the top of the triangle, 

it is less than 10 ns. 

For memory, the access time can be calculated as the time difference 

between the request to the memory and the service by memory. 

Access Mode - Access mode is a function of both memory organization 

and the inherent characteristics of the storage technology of the device. 

Access mode has relevance to the access time. There are three types of 

access methods. 

Random Access: If storage locations can be accessed in any order then 

access time is independent of the storage location being accessed. Ex: 

Semiconductor memory. 

Serial Access: Memory whose storage locations can be accessed only in 

a certain predetermined sequence. Ex: Magnetic tape 

Semi Random: The access is partly random and there apart serial. Ex: 

Hard disk, CD drives. It is random to locate the tracks and access within 

the track is serial. 

Retention - This is the characteristic of memory relating to the 

availability of written data for reading at a later time. Retention is a very 

important characteristic in the design of a system. 

 

 
 

Cycle Time - Is defined as the minimum time between two consecutive 

access operations. This is greater than the access time. Generally, when 

once access is over, there is a time gap required to start the next access, 

although minimal. Cycle time = Access time + defined time delay. Ex: 

You ask the shop keeper of what is the speed of the memory strip. 

Capacity - Measured in Units of Bytes, Kilobytes, Megabytes, 

Gigabytes, Terabytes, Petabytes. In figure 1, the bottom of the triangle 
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has a larger capacity and the ones at the top have the far lesser capacity. 

Ex: the Memory strip as 2GB, 4GB, Hard disk as 1TB, GPRs are 128 

words. 

Cost Per bit – Factors of cost per bit are Access time, Cycle time, Storage 

capacity, the purchase cost of the device and the hardware to use the 

device (controller). We don’t have much choice on this; designers care 

for this. 

Reliability – It is related to the lifetime of the device. Measured as Mean 

Time Between Failure (MTBF), in the units of days/years. Ex: Think of 

how frequently you replace your Hard disk while the CPU is still usable. 

There is a capacity/performance/price gap between each pair of adjacent 

levels of storage types (Refer figure 1). The objective of multilevel 

memory organisation is to achieve a good trade-off between cost, storage 

capacity and performance for the memory system as a whole. 

Multilevel hierarchical memory is based on the principle of Locality of 

Reference i.e. the address generated by a program tend to be localised to 

successive address locations and therefore predictable. In figure 1, the 

unit of data movement between successive levels is also inscribed. 

CPU Memory Interface 

Level 0 to Level 3 of the storage devices are volatile memory subsystems 

which are accessed by CPU directly. The Level 4 and level 5 are storage 

devices which are classified as I/O devices and will be dealt with later as 

a separate category. So let us see about the CPU Memory Interface basics. 

The CPU interacts with memory for two operations i.e READ or WRITE. 

READ is for getting either instructions or Data (Operands). Write is 

generally for writing results upon instruction execution. To access 

memory, the address of the memory location is required. This address is 

always loaded in the Memory Address Register (MAR) by the CPU. 

READ or WRITE operation is always carried out on the location specified 

by MAR. In the case of READ, the memory returns the data to the CPU 

while in the case of WRITE the data to be written onto the memory 

location is given by CPU. The data exchange happens via the Memory 

Data Register (MDR). The CPU communicates to the memory about the 

READ or WRITE activity as control signals. Also, some more signals to 

time the validity of information on the Address bus and Data bus are part 

of Control Signals. 

The communication about the address and data and the associated Control 

signals happen in the bus. A bus is a set of physical connections between 

two entities used for communication using electrical signals. This external 

bus has three components namely,(i) Address bus, (ii) Data bus, and (iii) 

Control Signals. Memory Address Register (MAR) and the Memory Data 

Register (MDR) play an important role in communication. The control 

signals are generated by the Control Unit. For more clarity refer to figure 

16. 
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Figure 16: CPU Memory Communication Interface 

Please note that the address bus is unidirectional and the data bus is 

bidirectional for obvious reasons discussed above. The control bus is also 

bidirectional. Further, the width of the address bus and data bus have 

critical meaning. The CPU can READ or WRITE data equal to the width 

of the data bus in one access. Generally, the width of the data bus equals 

the CPU word width. The width or the number of bits in the address bus 

has a bearing on the maximum number of locations that can be addressed 

or accessed by CPU. The signals on the bus are synchronised with the 

CPU clock. 

Data transfer rate or bandwidth is one of the measures of the 

performance of the external bus between CPU and Memory. The 

maximum amount of information that can be transferred to or from the 

memory per unit time is the data transfer rate or bandwidth and is 

measured in bits or words per second. 

Self-Assessment Exercises 1 

 

Answer the following questions by choosing the most suitable option: 

 

1. Which type of memory is volatile? 

   A. ROM 

   B. RAM 

   C. Flash memory 

   D. Hard disk 

 

2. What does DRAM stand for? 

   A. Direct Random Access Memory 

   B. Dynamic Random Access Memory 

   C. Dual Random Access Memory 

   D. Digital Random Access Memory 
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3. Which characteristic describes how long it takes to access data in 

memory? 

   A. Capacity 

   B. Access Time 

   C. Cycle Time 

   D. Retention 

Memory Capacity Integration 

Memory is often available in standard capacity strips or modules. More 

often we need to integrate these modules to meet our requirement. When 

more than a strip is assembled, how do the expansion and chaos-free 

access happen is a curiosity. We will see now. 

A typical memory module has the interface as shown in figure 17. This is 

in line with the signals on the external bus. A mention is required on 

RD/WR' and CS'. RD/WR' is a signal for READ or WRITE operation in 

mutual exclusion. When the signal is logical HIGH it is READ operation 

and when Logical LOW, WRITE is enabled on the Memory Module. CS' 

is Chip Select and active LOW i.e when this signal is logical LOW, only 

then the module is enabled and any operation can be done on this module. 

This Chip Select signal is useful in memory expansion. When RD is 

active, DataOUT comes from the module, while WR’ is active the 

direction of data is DATA-IN. 

 

 
 

Figure 17: Typical Memory Module Interface 

 

Memory expansion to the desired capacity is achieved by two means: 

Increasing the word width by a factor (Refer figure 18) 
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Figure 18: Memory expansion by word width 

 

Increasing the Number of Words (address) by a Factor (Refer figure 19) 

 

 

 
 

 

Figure 19: Memory expansion by address range 

 

When the capacity is expanded to increase the addressable range, the CS 

signal plays a role in selecting the correct block. The MSB bit(s) of the 

address is(are) decoded and connected to each module as CS' enable. In 

figure 19, a simple inverter (NOT logic) is used on the MSB line as there 

are only 2 modules. If there are more modules then a decoder is required. 

This kind of extrapolation is feasible to any capacity in multiples of the 

basic module. 
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3.2 Types of Computer Memory 

In general, computer memory is of three types: 

Primary memory 

Secondary memory 

Cache memory 

Now we discuss each type of memory one by one in detail: 

1. Primary Memory 

It is also known as the main memory of the computer system. It is used to 

store data and programs or instructions during computer operations. It 

uses semiconductor technology and hence is commonly called 

semiconductor memory. Primary memory is of two types: 

RAM (Random Access Memory): It is a volatile memory. Volatile 

memory stores information based on the power supply. If the power 

supply fails/is interrupted/stopped, all the data and information on this 

memory will be lost. RAM is used for booting up or starting the computer. 

It temporarily stores programs/data which has to be executed by 

the processor. RAM is of two types: 

S RAM (Static RAM): S RAM uses transistors and the circuits of this 

memory are capable of retaining their state as long as the power is applied. 

This memory consists of the number of flip flops with each flip flop 

storing 1 bit. It has less access time and hence, it is faster. 

DRAM (Dynamic RAM): D RAM uses capacitors and transistors and 

stores the data as a charge on the capacitors. They contain thousands of 

memory cells. It needs refreshing of charge on the capacitor after a few 

milliseconds. This memory is slower than S RAM. 

ROM (Read Only Memory): It is a non-volatile memory. Non-volatile 

memory stores information even when there is a power supply failed/ 

interrupted/stopped. ROM is used to store information that is used to 

operate the system. As its name refers to read-only memory, we can only 

read the programs and data that is stored on it. It contains some electronic 

fuses that can be programmed for a piece of specific information. The 

information stored in the ROM in binary format. It is also known as 

permanent memory. ROM is of four types: 

MROM(Masked ROM): Hard-wired devices with a pre-programmed 

collection of data or instructions were the first ROMs. Masked ROMs are 

a type of low-cost ROM that works in this way. 

PROM (Programmable Read Only Memory): This read-only memory 

is modifiable once by the user. The user purchases a blank PROM and 

uses a PROM program to put the required contents into the PROM. Its 

content can’t be erased once written. 

EPROM (Erasable Programmable Read Only Memory): EPROM is 

an extension to PROM where you can erase the content of ROM by 

exposing it to Ultraviolet rays for nearly 40 minutes. 

EEPROM (Electrically Erasable Programmable Read Only 

Memory): Here the written contents can be erased electrically. You can 

delete and reprogramme EEPROM up to 10,000 times. Erasing and 
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programming take very little time, i.e., nearly  4 -10 ms(milliseconds). 

Any area in an EEPROM can be wiped and programmed selectively. 

2. Secondary Memory 

It is also known as auxiliary memory and backup memory. It is a non-

volatile memory and used to store a large amount of data or information. 

The data or information stored in secondary memory is permanent, and it 

is slower than primary memory. A CPU cannot access secondary memory 

directly. The data/information from the auxiliary memory is first 

transferred to the main memory, and then the CPU can access it. 

Characteristics of Secondary Memory 

It is a slow memory but reusable. 

It is a reliable and non-volatile memory. 

It is cheaper than primary memory. 

The storage capacity of secondary memory is large. 

A computer system can run without secondary memory. 

In secondary memory, data is stored permanently even when the power is 

off. 

Types of Secondary Memory 

1. Magnetic Tapes: Magnetic tape is a long, narrow strip of plastic film 

with a thin, magnetic coating on it that is used for magnetic recording. 

Bits are recorded on tape as magnetic patches called RECORDS that run 

along many tracks. Typically, 7 or 9 bits are recorded concurrently. Each 

track has one read/write head, which allows data to be recorded and read 

as a sequence of characters. It can be stopped, started moving forward or 

backward or rewound. 

2. Magnetic Disks: A magnetic disk is a circular metal or a plastic plate 

and these plates are coated with magnetic material. The disc is used on 

both sides. Bits are stored in magnetized surfaces in locations called 

tracks that run in concentric rings. Sectors are typically used to break 

tracks into pieces. 
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Hard discs are discs that are permanently attached and cannot be removed 

by a single user. 

3. Optical Disks: It’s a laser-based storage medium that can be written to 

and read. It is reasonably priced and has a long lifespan. The optical 

disc can be taken out of the computer by occasional users. 

Types of Optical Disks 

CD – ROM 

It’s called a compact disk. Only read from memory. 

Information is written to the disc by using a controlled laser beam to burn 

pits on the disc surface. 

It has a highly reflecting surface, which is usually aluminium. 

The diameter of the disc is 5.25 inches. 

16000 tracks per inch is the track density. 

The capacity of a CD-ROM is 600 MB, with each sector storing 2048 

bytes of data. 

The data transfer rate is about 4800KB/sec. & the new access time is 

around 80 milliseconds. 

WORM-(WRITE ONCE READ MANY) 

A user can only write data once. 

The information is written on the disc using a laser beam. 

It is possible to read the written data as many times as desired. 

They keep lasting records of information but access time is high. 

It is possible to rewrite updated or new data to another part of the disc. 

Data that has already been written cannot be changed. 

Usual size – 5.25 inch or 3.5 inch diameter. 

The usual capacity of 5.25 inch disk is 650 MB,5.2GB etc. 

DVDs 

The term “DVD” stands for “Digital Versatile/Video Disc,” and there are 

two sorts of DVDs: 

DVDR (writable) 

DVDRW (Re-Writable) 

DVD-ROMS (Digital Versatile Discs): These are read-only memory 

(ROM) discs that can be used in a variety of ways. When compared to 

CD-ROMs, they can store a lot more data. It has a thick polycarbonate 

plastic layer that serves as a foundation for the other layers. It’s an optical 

memory that can read and write data. 

DVD-R: DVD-R is a writable optical disc that can be used just once. It’s 

a DVD that can be recorded. It’s a lot like WORM. DVD-ROMs have 

capacities ranging from 4.7 to 17 GB. The capacity of 3.5 inch disk is 1.3 

GB. 

3. Cache Memory 

It is a type of high-speed semiconductor memory that can help the CPU 

run faster. Between the CPU and the main memory, it serves as a buffer. 

It is used to store the data and programs that the CPU uses the most 

frequently. 
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Advantages of Cache Memory 

It is faster than the main memory. 

When compared to the main memory, it takes less time to access it. 

It keeps the programs that can be run in a short amount of time. 

It stores data in temporary use. 

Disadvantages of Cache Memory 

Because of the semiconductors used, it is very expensive. 

The size of the cache (amount of data it can store) is usually small. 

 

Self-Assessment Exercises 2 

 

Fill in the gaps in the sentences below with the most suitable words: 

 

1. ________ memory is non-volatile and stores information even when 

power is off. 

 

2. The three main types of computer memory are primary memory, 

secondary memory, and ________ memory. 

 

2. Memory expansion can be achieved by increasing the ________ 

width or increasing the number of ________. 

 

4.0 CONCLUSION 

A physical device that stores data or information temporarily or 

permanently in it is called memory. It’s a device where data is stored and 

processed. In common, a computer has primary and secondary memories. 

Auxiliary (secondary) memory stores data and programs for long-term 

storage or until the time a user wants to keep them in memory, while main 

memory stores instructions and data during programme execution; hence, 

any programme or file that is currently running or executing on a 

computer is stored in primary memory. 

 

5.0 SUMMARY 

Computer memory is a crucial component of a computer system 

responsible for storing and accessing data and instructions necessary for 

processing tasks. It is broadly categorized into two types: volatile memory 

(such as RAM) and non-volatile memory (such as ROM and storage 

devices like SSDs and HDDs). Volatile memory, like RAM, temporarily 

holds data and instructions that the CPU needs while performing tasks, 

ensuring quick access and efficient processing. Non-volatile memory, on 

the other hand, retains data even when the computer is powered off, 

storing essential firmware, system software, and user data. The interplay 

between these types of memory enables a computer to function 

efficiently, balancing speed and storage capacity to handle various 

computing tasks. 
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6.0 Tutor marked assignment 

1. What is memory? 

2. List and briefly define the types of memory 

 

7.1 Possible Answers to Self-Assessment Exercises 

 

Self-Assessment Exercise 1 

1. B 

2. B 

3. B 

 

Self-Assessment Exercise 2 

1. ROM 

2. Cache 

3. Word, addresses 
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UNIT 2  MEMORY HIERARCHY 

 

1.0 INTRODUCTION 

2.0 OBJECTIVES 

3.0 MAIN CONTENT 

3.1 Memory Hierarchy Design 

3.2 Internal Processor Memories 

3.3 Characteristics Terms for Various Memory Devices 

4.0 CONCLUSION 

5.0 SUMMARY 

6.0 TUTOR MARKED ASSIGNMENT 

7.0 REFERENCES/ FURTHER READING 

 

1.0 INTRODUCTION 

In the Computer System Design, memory hierarchy is an enhancement to 

organize the memory such that it can minimize the access time. The 

Memory Hierarchy was developed based on a program behavior known 

as locality of references. 

1.0 OBJECTIVES 

At the end of this unit, you should be able to 

- Memory hierarchy 

- List and discuss levels of memory hierarchy 

 

3.1 Memory Hierarchy Design 

In computer architecture, the memory hierarchy separates computer 

storage into a hierarchy based on response time. Since response time, 

complexity, and capacity are related, the levels may also be distinguished 

by their performance and control technologies. RAM (Random 

Access Memory) is an internal memory device which temporarily holds 

data and instructions while processing is happening. If the CPU is the 

“brain” of the computer, then RAM is the “working memory” or 

"thinking memory" used to store data just for the programs and 

applications being used at that time. 

A typical memory hierarchy starts with a small, expensive, and relatively 

fast unit, called the cache, followed by a larger, less expensive, and 

relatively slow main memory unit. Cache and main memory are built 

using solid-state semiconductor material (typically CMOS transistors). It 

is customary to call the fast memory level the primary memory. The solid-

state memory is followed by larger, less expensive, and far slower 

magnetic memories that consist typically of the (hard) disk and the tape. 

It is customary to call the disk the secondary memory, while the tape is 

conventionally called the tertiary memory. The objective behind 

designing a memory hierarchy is to have a memory system that performs 

as if it consists entirely of the fastest unit and whose cost is dominated by 

the cost of the slowest unit. 
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In the Computer System Design, Memory Hierarchy is an enhancement 

to organize the memory such that it can minimize the access time. The 

Memory Hierarchy was developed based on a program behavior known 

as locality of references. The figure below clearly demonstrates the 

different levels of memory hierarchy : 

This Memory Hierarchy Design is divided into 2 main types: 

External Memory or Secondary Memory: Comprising Magnetic Disk, 

Optical Disk, and Magnetic Tape i.e. peripheral storage devices which are 

accessible by the processor via I/O Module. 

Internal Memory or Primary Memory –Comprising of Main Memory, 

Cache Memory & CPU registers. This is directly accessible by the 

processor. 

Thus, a memory system can be considered to consist of three groups of 

memories. These are:  

3.2 Internal Processor Memories 

These consist of a small set of high-speed registers that are internal to a 

processor and are used as temporary locations where actual processing is 

done.  

Primary Memory or Main Memory 

It is a large memory which is fast but not as fast as internal processor 

memory. This memory is accessed directly by the processor. It is mainly 

based on integrated circuits (IC). 

Secondary Memory/Auxiliary Memory/Backing Store: 

Auxiliary memory is much larger than main memory but is slower than 

main memory. It normally stores system programs (programs which are 

used by system to perform various operational functions), other 

instructions, programs and data files. Secondary memory can also he used 

as an overflow memory in case the main memory capacity has been 

exceeded. Secondary memories cannot be accessed directly by a 

processor.  

First the information of these memories is transferred to the main memory 
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and then the information can be accessed as the information of main 

memory. There is another kind of memory which is increasingly being 

used in modern computers, this is called Cache memory. It is logically 

positioned between the internal memory (registers) and main memory. It 

stores or catches some of the content of the main memory which is 

currently in use of the processor. We will discuss about this memory in 

greater details in a subsequent section of this unit. 

3.3 Characteristics Terms for Various Memory Devices 

The memory hierarchy can be characterized by a number of parameters. 

Among these parameters are the access type, capacity, cycle time, latency, 

bandwidth, and cost.  

The term access:  refers to the action that physically takes place during a 

read or writes operation. 

The capacity:  of a memory level is usually measured in bytes.  

The cycle time: is defined as the time elapsed from the start of a read 

operation to the start of a subsequent read.  

The latency: is defined as the time interval between the request for 

information and the access to the first bit of that information.  

The bandwidth: provides a measure of the number of bits per second that 

can be accessed.  

The cost: of a memory level is usually specified as dollars per megabytes. 

Figure 1 depicts a typical memory hierarchy. Table 1 provides typical 

values of the memory hierarchy parameters. 

The term random access: refers to the fact that any access to any memory 

location takes the same fixed amount of time regardless of the actual 

memory location and/or the sequence of accesses that takes place. For 

example, if a write operation to memory location 100 takes 15 ns and if 

this operation is followed by a read operation to memory location 3000, 

then the latter operation will also take 15 ns. This is to be compared to 

sequential access in which if access to location 100 takes 500 ns, and if a 

consecutive access to location 101 takes 505 ns, then it is expected that 

an access to location 300 may take 1500 ns. This is because the memory 

has to cycle through locations 100 to 300, with each location requiring 5 

ns. 

The effectiveness of a memory hierarchy depends on the principle of 

moving information into the fast memory infrequently and accessing it 

many times before replacing it with new information. This principle is 

possible due to a phenomenon called locality of reference; that is, within 

a given period of time, programs tend to reference a relatively confined 

area of memory repeatedly. There exist two forms of locality: spatial and 

temporal locality. 

RAM and ROM architecture. 

Read-only memory, or ROM, is a form of data storage in computers and 

other electronic devices that cannot be easily altered or reprogrammed. 

RAM is referred to as volatile memory and is lost when the power is 

turned off whereas ROM in non-volatile and the contents are retained 
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even after the power is switched off. 

Types of ROM: Semiconductor-Based 

Classic mask-programmed ROM chips are integrated circuits  that  

physically encode the data to be stored, and thus it  is impossible to change 

their  contents after fabrication. Other types of non-volatile solid-state 

memory permit some degree of modification: 

Programmable read-only memory (PROM), or one-time programmable 

ROM (OTP), can be written to or programmed via a special device called 

a PROM programmer. Typically, this device uses high voltages to  

permanently  destroy  or create internal  links  (fuses  or  antifuses)  within  

the  chip.  Consequently,  a  PROM can only be programmed once. 

Erasable programmable read-only memory (EPROM) can be erased by 

exposure to strong ultraviolet light (typically for 10 minutes or longer), 

then rewritten with a process that again needs higher than usual voltage 

applied. Repeated exposure to UV light will eventually wear out an 

EPROM, but the endurance of most EPROM chips exceeds 1000  cycles 

of erasing and reprogramming. EPROM chip packages can often be 

identified by the prominent quartz "window" which allows UV light to 

enter. After programming, the window is typically covered with a label to 

prevent accidental erasure. Some EPROM chips are factory-erased before 

they are packaged, and include no window; these are effectively PROM. 

Electrically  erasable  programmable  read-only  memory  (EEPROM) is 

based on a similar semiconductor structure to EPROM, but allows its 

entire  contents  (or selected banks) to be electrically erased,  then  

rewritten  electrically,  so  that  they need not be removed from the 

computer (whether general-purpose or an embedded computer in a 

camera, MP3 player, etc.). Writing or flashing an EEPROM  is  much 

slower (milliseconds per bit) than reading from a ROM or writing to a 

RAM (nanoseconds in both cases). 

Electrically alterable read-only memory (EAROM) is a type of EEPROM 

that can be modified one bit at a time. Writing is a very slow process and 

again needs higher voltage (usually around 12 V) than is used for read 

access. EAROMs are intended for applications that require infrequent and 

only partial rewriting. EAROM may be used as non-volatile storage for 

critical system setup information; in many applications, EAROM has 

been supplanted by CMOS  RAM  supplied  by  mains power and backed-

up with a lithium battery. 

Flash memory (or simply flash) is a modern type of EEPROM invented 

in 1984. Flash memory can be erased and rewritten faster than ordinary 

EEPROM, and newer designs feature very high endurance (exceeding 

1,000,000 cycles). Modern NAND flash makes efficient use of silicon 

chip area, resulting in individual ICs with a capacity as high as 32 GB as 

of 2007; this feature, along with its endurance and physical durability, has 

allowed NAND flash to replace magnetic in some applications (such as 

USB flash drives). Flash memory is sometimes called flash ROM or flash 

EEPROM when used as a replacement for older ROM types, but not in 
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applications that take advantage of its ability to be modified quickly and 

frequently. 

Random-access memory, or RAM, is a form of data storage that can  be 

accessed randomly at any time, in any order and from any physical 

location in contrast to other storage devices, such as hard drives, where 

the physical location 

of the data determines the time taken to retrieve it. RAM is measured in 

megabytes and the speed is measured in nanoseconds and RAM chips can 

read data faster than ROM. 

Types of  RAM: The two widely used forms of modern RAM are static  

RAM (SRAM) and dynamic RAM (DRAM). In SRAM, a bit of data is 

stored using the state of a six transistor memory cell. This form of RAM 

is more expensive to produce, but  is generally faster and requires  less  

dynamic  power  than  DRAM.  In  modern computers, SRAM is often 

used as cache memory for the CPU. DRAM  stores  a bit  of data using a 

transistor and  capacitor  pair,  which  together  comprise  a  DRAM  cell. 

The capacitor holds a high or low charge (1 or 0, respectively), and the 

transistor acts as a switch that lets the control circuitry on the chip read 

the capacitor's state of charge or change it. As this form of memory  is  

less  expensive  to  produce  than static RAM, it is the predominant form 

of computer memory used in  modern computers. The figure below shows 

DRAM & SRAM resp. 

 
Both static and dynamic RAM are considered volatile, as their state is lost 

or reset when power is removed from the system. By contrast, read-only 

memory (ROM) stores data by permanently enabling or disabling selected 

transistors, such that the memory cannot be altered. Writeable variants of 

ROM (such as EEPROM and flash memory) share properties of both 

ROM and RAM, enabling data to persist without power and to be updated 

without requiring special equipment. These persistent forms of 

semiconductor ROM include USB flash drives, memory cards for 

cameras and portable devices, and solid-state drives. ECC memory 

(which can be either SRAM or DRAM) includes special circuitry to detect 

and/or correct random faults (memory errors) in the stored data, using 

parity bits or error correction codes. 

In general, the term RAM refers solely to solid-state memory devices 

(either DRAM or SRAM), and more specifically the main memory in 

most computers. In optical storage, the term DVD-RAM is somewhat of 

a misnomer since, unlike CD- RW or DVD-RW it does not need to be 
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erased before reuse. Nevertheless, a DVD- RAM behaves much like a 

hard disc drive if somewhat slower. 

Difference between Static Ram And Dynamic Ram 

Requirements of Memory Management System 

Memory management keeps track of the status of each memory location, 

whether it is allocated or free. It allocates the memory dynamically to the 

programs at their request and frees it for reuse when it is no longer needed.  

Memory management meant to satisfy some requirements that we should 

keep in mind. 

These Requirements of memory management are: 

Relocation – The available memory is generally shared among a number 

of processes in a multiprogramming system, so it is  not  possible  to  know  

in advance which other programs will be resident in main memory at the 

time of execution of his program. Swapping the active processes in and 

out of the main memory enables the operating system to have a larger 

pool of ready-to-execute process. 

 

When a program gets swapped out to disk memory, then it is not always 

possible that when it is swapped back into main memory it occupies the 

previous memory location, since the location may still be occupied by 

another process. We may need to relocate the process to a different area 

of memory. Thus there is a possibility that program may be moved in 

main memory due to swapping. 
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The figure depicts a process image. The process image occupies a 

continuous region of the main memory. The operating system will need 

to know many things including the location of process control 

information, the execution stack, and the code entry. Within a program, 

there are memory references in various instructions and these are called 

logical addresses. 

After loading the program into main memory, the processor and the 

operating system must be able to translate logical addresses into physical 

addresses. Branch instructions contain the address of the next instruction 

to be executed. Data reference instructions contain the address of the byte 

or word of data referenced. 

Protection – There is always a danger when we have multiple programs 

at the same time as one program may write to the address space of another 

program. So every process must be protected against unwanted 

interference when other process tries to write in a process whether 

accidental or incidental. Between relocation and protection requirements 

a trade-off occurs as the satisfaction of 

relocation requirement increases the difficulty of satisfying the protection 

requirement. 

Prediction of the location of a program in main memory is not possible, 

that’s why it is impossible to check the absolute address at compile time 

to assure protection. Most of the programming language allows the 

dynamic calculation of address at run time. The memory protection 

requirement must be satisfied by the processor rather than the operating 

system because the operating system can hardly control a process when it 

occupies the processor. Thus it is possible to check the validity of memory 

references. 

Sharing – A protection mechanism must have to  allow  several  processes  

to access the same  portion  of  main  memory.  Allowing  each  processes  

access  to the same copy of the program rather than have their own 

separate copy has an advantage. 

For example, multiple processes may use the  same  system  file  and  it  

is natural to load one copy of the file in main memory and let it shared by 

those processes. It is the task of  Memory  management  to  allow  

controlled  access  to the shared areas of memory without compromising 

the protection. Mechanisms are used to support relocation supported 

sharing capabilities. 

Logical organization – Main memory is organized as linear or it can be a 

one- dimensional address space which  consists  of  a  sequence  of  bytes  

or  words. Most of the programs can be organized into modules, some of 

those are unmodifiable (read-only, execute only) and some of those 

contain data that can be modified. To effectively deal with a user program, 

the operating system and computer hardware must support a basic module 

to provide the required protection        and        sharing.        It        has        

the        following        advantages: 

Modules are written and compiled  independently  and  all  the  references 
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from one module to another module are  resolved  by  `the  system  at  run 

time. 

Different modules are provided with different degrees of protection. 

There are mechanisms by which modules can be shared among processes. 

Sharing can be provided on a module level that lets the user specify the 

sharing that is desired. 

Physical organization – The structure of computer memory has two levels 

referred to as main memory and secondary memory. Main memory is 

relatively very fast and costly as compared to the secondary memory. 

Main memory is volatile. Thus secondary memory is provided for storage 

of data on a long-term basis while the main memory holds currently used 

programs.  The major system concern between main memory and 

secondary memory is the flow of information and it is impractical for 

programmers to understand this for two reasons: 

The programmer may engage in a practice known as overlaying when the 

main memory available for a program and its data may be insufficient. It 

allows different modules to be assigned to the same region of memory. 

One disadvantage is that it is time-consuming for the programmer. 

In a multiprogramming environment, the programmer does not know how 

much space will be available at the time of coding and where that space 

will be located inside the memory. 

Self-Assessment Exercises 1 

 

Answer the following questions by choosing the most suitable option: 

 

1. What is the primary purpose of memory hierarchy? 

   A. To increase memory capacity 

   B. To minimize access time while managing cost 

   C. To improve data security 

   D. To reduce power consumption 

 

2. Which memory level is fastest but most expensive? 

   A. Secondary memory 

   B. Main memory 

   C. Cache memory 

   D. Virtual memory 

 

3. What principle makes memory hierarchy effective? 

   A. Locality of reference 

   B. Random access patterns 

   C. Sequential processing 

   D. Parallel execution 

4.0 CONCLUSION 

The computer memory can be divided into 5 major hierarchies that are 

based on use as well as speed. A processor can easily move from any one 

level to some other on the basis of its requirements. These five hierarchies 
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in a system’s memory are register, cache memory, main memory, 

magnetic disc, and magnetic tape. 

 

5.0 SUMMARY 

The memory hierarchy in computer systems is a structured arrangement 

of various types of memory based on speed, cost, and size, designed to 

optimize performance and efficiency. At the top of the hierarchy are the 

fastest and most expensive memory types, such as CPU registers and 

cache, which provide quick access to frequently used data. Below these 

are main memory, or RAM, which is slower and less costly but has higher 

capacity. Further down are secondary storage devices like SSDs and 

HDDs, which offer large storage capacities at lower speeds and costs. At 

the bottom, tertiary storage includes external drives and cloud storage, 

used for long-term data retention with the slowest access speeds. This 

hierarchical arrangement ensures that the most critical data is accessed 

rapidly while providing cost-effective solutions for large-scale data 

storage needs. 

 

6.0 Tutor marked assignment 

1. What do you mean by Memory Hierarchy? 

2. Explain the types of Memory Hierarchy 

 

7.1 Possible Answers to Self-Assessment Exercises 

 

Self-Assessment Exercise 1 

1. B 

2. C 

3. A 

 

7.0 References/ Further reading 

Przybylski, S. A. (1990). Cache and memory hierarchy design: a 

performance directed approach. Morgan Kaufmann. 

Milenkovic, A., Milenkovic, M., & Barnes, N. (2003, March). A 

performance evaluation of memory hierarchy in embedded systems. 

In Proceedings of the 35th Southeastern Symposium on System Theory, 

2003. (pp. 427-431). IEEE. 

Przybylski, S. A. (1988). Performance directed memory hierarchy design. 

Stanford University. 
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UNIT 3  VIRTUAL MEMORY 

1.0 Introduction 

2.0 Objectives 

3.0 Main content 

3.1 Virtual Memory 

3.2 Types of virtual memory 

3.3 Mapping in Pages 

 

1.0 Introduction 

Virtual Memory is a storage allocation scheme in which secondary 

memory can be addressed as though it were part of the main memory. The 

addresses a program may use to reference memory are distinguished from 

the addresses the memory system uses to identify physical storage sites 

and program-generated addresses are translated automatically to the 

corresponding machine addresses. A memory hierarchy, consisting of a 

computer system’s memory and a disk, that enables a process to operate 

with only some portions of its address space in memory. A virtual 

memory is what its name indicates- it is an illusion of a memory that is 

larger than the real memory. We refer to the software component of 

virtual memory as a virtual memory manager. The basis of virtual 

memory is the noncontiguous memory allocation model. The virtual 

memory manager removes some components from memory to make room 

for other components. The size of virtual storage is limited by the 

addressing scheme of the computer system and the amount of secondary 

memory available not by the actual number of main storage locations. 

2.0 objectives 

At the end of this unit, you should be able to 

Discuss the concept of virtual memory and  

Discuss the various implementations of virtual memory. 

 The objectives of this module are to  

Discuss the concept of virtual memory and  

Discuss the various implementations of virtual memory. 

  

3.1 The Virtual Memory 

All of us are aware of the fact that our program needs to be available in 

main memory for the processor to execute it. Assume that your computer 

has something like 32 or 64 MB RAM available for the CPU to use. 

Unfortunately, that amount of RAM is not enough to run all of the 

programs that most users expect to run at once. For example, if you load 

the operating system, an e-mail program, a Web browser and word 

processor into RAM simultaneously, 32 MB is not enough to hold all of 

them. If there were no such thing as virtual memory, then you will not be 

able to run your programs, unless some program is closed. With virtual 

memory, we do not view the program as one single piece. We divide it 

into pieces, and only the one part that is currently being referenced by the 

processor need to be available in main memory. The entire program is 
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available in the hard disk. As the copying between the hard disk and main 

memory happens automatically, you don’t even know it is happening, and 

it makes your computer feel like is has unlimited RAM space even though 

it only has 32 MB installed. Because hard disk space is so much cheaper 

than RAM chips, it also has an economic benefit. 

 Techniques that automatically move program and data blocks into the 

physical main memory when they are required for execution are 

called virtual memory techniques. Programs, and hence the processor, 

reference an instruction and data space that is independent of the available 

physical main memory space. The binary addresses that the processor 

issues for either instructions or data are called virtual or logical 

addresses. These addresses are translated into physical addresses by a 

combination of hardware and software components. If a virtual address 

refers to a part of the program or data space that is currently in the physical 

memory, then the contents of the appropriate location in the main memory 

are accessed immediately.  

On the other hand, if the referenced address is not in the main memory, 

its contents must be brought into a suitable location in the memory before 

they can be used. Therefore, an address used by a programmer will be 

called a virtual address, and the set of such addresses the address 

space. An address in main memory is called a location or physical 

address. The set of such locations is called the memory space, which 

consists of the actual main memory locations directly addressable for 

processing. As an example, consider a computer with a main-memory 

capacity of 32M words. Twenty-five bits are needed to specify a physical 

address in memory since 32 M = 225. Suppose that the computer 

has available auxiliary memory for storing 235, that is, 32G words. Thus, 

the auxiliary memory has a capacity for storing information equivalent to 

the capacity of 1024 main memories. Denoting the address space by N 

and the memory space by M, we then have for this example N = 32 Giga 

words and M = 32 Mega words. 

 The portion of the program that is shifted between main memory and 

secondary storage can be of fixed size (pages) or of variable size 

(segments). Virtual memory also permits a program’s memory to be 

physically noncontiguous , so that every portion can be allocated 

wherever space is available. This facilitates process relocation. Virtual 

memory, apart from overcoming the main memory size limitation, allows 

sharing of main memory among processes. Thus, the virtual memory 

model provides decoupling of addresses used by the program (virtual) and 

the memory addresses (physical). Therefore, the definition of virtual 

memory can be stated as, “ The conceptual separation of user logical 

memory from physical memory in order to have large virtual memory on 

a small physical memory”. It gives an illusion of infinite storage, though 

the memory size is limited to the size of the virtual address. 

Even though the programs generate virtual addresses, these addresses 

cannot be used to access the physical memory. Therefore, the virtual to 
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physical address translation has to be done. This is done by the memory 

management unit (MMU). The mapping is a dynamic operation, which 

means that every address is translated immediately as a word is referenced 

by the CPU. This concept is depicted diagrammatically in Figures 20 and 

21. Figure 20 gives a general overview of the mapping between the logical 

addresses and physical addresses. Figure 21 shows how four different 

pages A, B, C and D are mapped. Note that, even though they are 

contiguous pages in the virtual space, they are not so in the physical space. 

Pages A, B and C are available in physical memory at non-contiguous 

locations, whereas, page D is not available in physical storage. 

 

  

 

 

 

 

 

Figure 20. Overview of the mapping between logical and physical 

addresses 

 

 
 

 

 

 

 

Figure 21. Four various mapping pages 
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3.2 Types of Virtual Memory 

Address mapping using Paging: The address mapping is simplified if the 

information in the address space and the memory space are each divided 

into groups of fixed size. The physical memory is broken down into 

groups of equal size called page frames and the logical memory is divided 

into pages of the same size. The programs are also considered to be split 

into pages. Pages commonly range from 2K to 16K bytes in length. They 

constitute the basic unit of information that is moved between the main 

memory and the disk whenever the translation mechanism determines that 

a move is required. Pages should not be too small, because the access time 

of a magnetic disk is much longer than the access time of the main 

memory. The reason for this is that it takes a considerable amount of time 

to locate the data on the disk, but once located, the data can be transferred 

at a rate of several megabytes per second. On the other hand, if pages are 

too large it is possible that a substantial portion of a page may not be used, 

yet this unnecessary data will occupy valuable space in the main memory. 

If you consider a computer with an address space of 1M and a memory 

space of 64K, and if you split each into groups of 2K words, you will 

obtain 29 (512) pages and thirty-two page frames. At any given time, up 

to thirty-two pages of address space may reside in main memory in 

anyone of the thirty-two blocks. 

  

In order to do the mapping, the virtual address is represented by two 

numbers: a page number and an offset or line address within the page. In 

a computer with 2 p words per page, p bits are used to specify an offset 

and the remaining high-order bits of the virtual address specify the page 

number. In the example above, we considered a virtual address of 20 bits. 

Since each page consists of 211 = 2K words, the high order nine bits of 

the virtual address will specify one of the 512 pages and the low-order 11 

bits give the offset within the page. Note that the line address in address 

space and memory space is the same; the only mapping required is from 

a page number to a block number. 

 The mapping information between the pages and the page frames is 

available in a page table. The page table consists of as many pages that a 

virtual address can support. The base address of the page table is stored 

in a register called the Page Table Base Register (PTBR). Each process 

can have one or more of its own page tables and the operating system 

switches from one page table to another on a context switch, by loading a 

different address into the PTBR. The page number, which is part of the 

virtual address, is used to index into the appropriate page table entry. The 

page table entry contains the physical page frame address, if the page is 

available in main memory. Otherwise, it specifies wherein secondary 

storage, the page is available. This generates a page fault and the operating 

system brings the requested page from secondary storage to main storage. 

Along with this address information, the page table entry also provides 

information about the privilege level associated with the page and the 
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access rights of the page. This helps in p roviding protection to the page. 

The mapping process is indicated in Figure 22. Figure 23 shows a typical 

page table entry. The dirty or modified bit indicates whether the page was 

modified during the cache residency period. 

 

 
Figure 22. The Mapping Process 

 

 
 

 

 

Figure 23. Example of Page Table entry 

M – indicates whether the page has been written (dirty) 

R – indicates whether the page has been referenced (useful for 

replacement) 

V – Valid bit 

Protection bits – indicate what operations are allowed on this page 

Page Frame Number says where in memory is the page 

A virtual memory system is thus a combination of hardware and software 

tech-niques. The memory management software system handles all the 

software operations for the efficient utilization of memory space. It must 

decide the answers to the usual four questions in a hierarchical memory 

system: 

Q1: Where can a block be placed in the upper level? 

Q2: How is a block found if it is in the upper level? 

Q3: Which block should be replaced on a miss? 

Q4: What happens on a write? 

  

The hardware mapping mechanism and the memory management 

software together constitute the architecture of a virtual memory and 
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answer all these questions . 

Self-Assessment Exercises 1 

 

Answer the following questions by choosing the most suitable option: 

 

1. What is the main purpose of virtual memory? 

   A. To increase processing speed 

   B. To provide the illusion of larger memory than physically available 

   C. To improve data security 

   D. To reduce power consumption 

 

2. What unit is used to transfer data between main memory and secondary 

storage in virtual memory systems? 

   A. Bytes 

   B. Words 

   C. Pages 

   D. Sectors 

 

3. What happens when a program references a page not in main memory? 

   A. System crash 

   B. Page fault 

   C. Memory overflow 

   D. Cache miss 

  

When a program starts execution, one or more pages are transferred into 

main memory and the page table is set to indicate their position. Thus, the 

page table entries help in identifying a page. The program is executed 

from main memory until it attempts to reference a page that is still in 

auxiliary memory. This condition is called a page fault. When a page fault 

occurs, the execution of the present program is suspended until the 

required page is brought into main memory. Since loading a page from 

auxiliary memory to main memory is basically an I/O operation, the 

operating system assigns this task to the I/O processor. In the meantime, 

control is transferred to the next program in memory that is waiting to be 

processed in the CPU. Later, when the memory block has been assigned 

and the transfer completed, the original program can resume its operation. 

It should be noted that it is always a write back policy that is adopted, 

because of the long access times associated with the disk access.  

Also, when a page fault is serviced, the memory may already be full. In 

this case, as we discussed for caches, a replacement has to be done. The 

replacement policies are again FIFO and LRU. The FIFO replacement 

policy has the advantage of being easy to implement. !t has the 

disadvantage that under certain circumstances pages are removed and 

loaded from memory too frequently. The LRU policy is more difficult to 

implement but has been more attractive on the assumption that the least 

recently used page is a better candidate for removal than the least recently 
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loaded page as in FIFO. The LRU algorithm can be implemented by 

associating a counter with every page that is in main memory. When a 

page is referenced, its associated counter is set to zero. At fixed intervals 

of time, the counters associated with all pages presently in memory are 

incremented by 1. The least recently used page is the page with the highest 

count. The counters are often called aging registers, as their count 

indicates their age, that is, how long ago their associated pages have been 

referenced. 

  

Drawback of Virtual memory: So far we have assumed that the page 

tables are stored in memory. Since, the page table information is used by 

the MMU, which does the virtual to physical address translation, for every 

read and write access, every memory access by a program can take at least 

twice as long: one memory access to obtain the physical address and a 

second access to get the data. So, ideally, the page table should be situated 

within the MMU. Unfortunately, the page table may be rather large, and 

since the MMU is normally implemented as part of the processor chip, it 

is impossible to include a complete page table on this chip. Therefore, the 

page table is kept in the main memory. However, a copy of a small portion 

of the page table can be accommodated within the MMU. This portion 

consists of the page table entries that correspond to the most recently 

accessed pages. A small cache, usually called the Translation Lookaside 

Buffer (TLB) is incorporated into the MMU for this purpose. The TLB 

stores the most recent logical to physical address translations. The 

operation of the TLB with respect to the page table in the main memory 

is essentially the same as the operation we have discussed in conjunction 

with the cache memory.  

An essential requirement is that the contents of the TLB be coherent with 

the contents of page tables in the memory. When the operating system 

changes the contents of page tables, it must simultaneously invalidate the 

corresponding entries in the TLB. The valid bit in the TLB is provided for 

this purpose. When an entry is invalidated, the TLB will acquire the new 

information as part of the MMU’s normal response to access misses. 

  

With the introduction of the TLB, the address translation proceeds as 

follows. Given a virtual address, the MMU looks in the TLB for the 

referenced page. If the page table entry for this page is found in the TLB, 

the physical address is obtained immediately. If there is a miss in the TLB, 

then the required entry is obtained from the page table in the main 

memory and the TLB is updated. 

 Recall that the caches need a physical address, unless we use virtual 

caches. As discussed with respect to cache optimizations, machines with 

TLBs go one step further to reduce the number of cycles/cache access. 

They overlap the cache access with the TLB access. That is, the high order 

bits of the virtual address are used to look in the TLB while the low order 

bits are used as index into the cache. The flow is as shown below. 
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 The overlapped access only works as long as the address bits used to 

index into the cache do not change as the result of VA translation. This 

usually limits things to small caches, large page sizes, or high n-way set 

associative caches if you want a large cache. 

Advantages of Virtual Memory 

More processes may be maintained in the main memory: Because we 

are going to load only some of the pages of any particular process, there 

is room for more processes. This leads to more efficient utilization of the 

processor because it is more likely that at least one of the more numerous 

processes will be in the ready state at any particular time. 

A process may be larger than all of the main memory: One of the most 

fundamental restrictions in programming is lifted. A process larger than 

the main memory can be executed because of demand paging. The OS 

itself loads pages of a process in the main memory as required. 

It allows greater multiprogramming levels by using less of the available 

(primary) memory for each process. 

It has twice the capacity for addresses as main memory. 

It makes it possible to run more applications at once. 

Users are spared from having to add memory modules when RAM space 

runs out, and applications are liberated from shared memory management. 

When only a portion of a program is required for execution, speed has 

increased. 

Memory isolation has increased security. 

It makes it possible for several larger applications to run at once. 

Memory allocation is comparatively cheap. 

It doesn’t require outside fragmentation. 

It is efficient to manage logical partition workloads using the CPU. 

Automatic data movement is possible. 

Disadvantages of Virtual Memory 

It can slow down the system performance, as data needs to be constantly 

transferred between the physical memory and the hard disk. 

It can increase the risk of data loss or corruption, as data can be lost if the 

hard disk fails or if there is a power outage while data is being transferred 

https://www.geeksforgeeks.org/different-types-ram-random-access-memory/
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to or from the hard disk. 

It can increase the complexity of the memory management system, as the 

operating system needs to manage both physical and virtual memory. 

Self-Assessment Exercises 2 

 

Fill in the gaps in the sentences below with the most suitable words: 

 

1. The ________ management unit (MMU) performs virtual to physical 

address translation. 

 

2. Virtual memory allows ________ allocation of memory and supports 

sharing of main memory among processes. 

 

3. The ________ policy determines which page to remove when 

memory is full. 

 

4.0 Conclusion 

In the ever-evolving world of computer science, the concept of virtual 

memory has become increasingly important for both computer 

architecture and organisation. This in-depth guide will provide an 

overview of what virtual memory is, along with its benefits and 

drawbacks. Delving into the role of virtual memory in the overall 

structure of computer systems, you will gain an understanding of how it 

interacts with primary memory and enhances system performance. 

Furthermore, the discussion will encompass topics such as the purpose 

and functionality of virtual memory, its role in memory management and 

allocation, as well as addressing common issues and challenges 

associated with its implementation. So, let's embark on a journey through 

the fascinating realm of virtual memory and uncover its implications for 

modern computer science. 

5.0 Summary 

To summarize, we have looked at the need for the concept of virtual 

memory. Virtual memory is a concept implemented using hardware and 

software. The restriction placed on the program size is not based on the 

RAM size but based on the virtual memory size. There are three different 

ways of implementing virtual memory. The MMU does the logical to 

physical address translation. Paging uses fixed-size pages to move 

between main memory and secondary storage. Paging uses page tables to 

map the logical addresses to physical addresses. Thus, virtual memory 

helps in dynamic allocation of the required data, sharing of data, and 

providing protection. The TLB is used to store the most recent logical to 

physical address translations. 

6.0 Tutor Marked Assignment 

1. What are the differences among various mapping  

2. What is a virtual memory? 

3. State five (5) advantages of virtual memory. 
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7.1 Possible Answers to Self-Assessment Exercises 

 

Self-Assessment Exercise 1 

1. B 

2. C 

3. B 

 

Self-Assessment Exercise 2 

1. Memory 

2. Dynamic 

3. Replacement 

7.0 References/Further reading 

Adamck, J. Foundation of coding New York Wiley 1991 

Smith,a CACHE MEMORIES ACM computing surveys September 1992 
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UNIT 4 CACHE MEMORY 

 

1.0 INTRODUCTION 

2.0 OBJECTIVES 

3.0 MAIN CONTEXT 

3.1 CACHE MEMORY PRINCIPLES 

3.2 ELEMENTS OF CACHE DESIGN 

3.3 PENTIUM 4 CACHE ORGANIZATION 

3.4 ARM CACHE ORGANIZATION 

4.0 CONCLUSION 

5.0 SUMMARY 

6.0 TUTOR MARKED ASSIGNMENT 

7.0 REFERENCES AND FURTHER READING 

1.0   Introduction 

A small but fast cache memory, in which the contents of the most 

commonly accessed locations are maintained, can be placed between the 

main memory and the CPU. When a program executes, the cache memory 

is searched first, and the referenced word is accessed in the cache if the 

word is present. If the referenced word is not in the cache, then a free 

location is created in the cache, and the referenced word is brought into 

the cache from the main memory. In general most future access to main 

memory by the processor will likely be to locations recently accessed. So 

the cache memory automatically retains a copy of some of the recently 

used words from the dynamic random-access memory (DRAM) 

2.0 Objectives 

At the end of this unit, you should be able to 

- Explain the principles and elements of cache design\understood 

Pentium 4 cache organization 

- Discuss ARM cache organization 

3.1 Cache memory principles 

3.2 Replacement Policies in Associative Mapped Caches 

3.3 Cache Performance 

3.0 MAIN CONTENTS 

3.1 Cache Principle 

Cache Memory is a special very high-speed memory. The cache is a 

smaller and faster memory that stores copies of the data from frequently 

used main memory locations. There are various different independent 

caches in a CPU, which store instructions and data. The most important 

use of cache memory is that it is used to reduce the average time to access 

data from the main memory.  The data or contents of the main memory 

that are used frequently by CPU are stored in the cache memory so that 

the processor can easily access that data in a shorter time. Whenever the 

CPU needs to access memory, it first checks the cache memory. If the 

data is not found in cache memory, then the CPU moves into the main 

memory. Cache memory is placed between the CPU and the main 

memory. 
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Characteristics of Cache Memory 

Cache memory is an extremely fast memory type that acts as a buffer 

between RAM and the CPU. 

Cache Memory holds frequently requested data and instructions so that 

they are immediately available to the CPU when needed. 

Cache memory is costlier than main memory or disk memory but more 

economical than CPU registers. 

Cache Memory is used to speed up and synchronize with a high-speed 

CPU. 

 

 
 

 

Levels of Memory 

Level 1 or Register: It is a type of memory in which data is stored and 

accepted that are immediately stored in the CPU. The most commonly 

used register is Accumulator, Program counter, Address Register, etc. 

Level 2 or Cache memory: It is the fastest memory that has faster access 

time where data is temporarily stored for faster access. 

Level 3 or Main Memory: It is the memory on which the computer works 

currently. It is small in size and once power is off data no longer stays in 

this memory. 

Level 4 or Secondary Memory: It is external memory that is not as fast as 

the main memory but data stays permanently in this memory. 

The speed of the main memory is very low in comparison with the speed 

of modern processors. For good performance, the processor cannot spend 

much of its time waiting to access instructions and data in main memory. 

Hence, it is important to devise a scheme that reduces the time needed to 

access the necessary information. Since the speed of the main memory 

unit is limited by electronic and packaging constraints, the solution must 

be sought in a different architectural arrangement. An efficient solution is 

to use a fast cache memory, which essentially makes the main memory 

appear to the processor to be faster than it is. The cache is a smaller, faster 

memory which stores copies of the data from the most frequently used 

main memory locations. As long as most memory accesses are to cached 

memory locations, the average latency of memory accesses will be closer 

to the cache latency than to the latency of main memory. 

 The effectiveness of the cache mechanism is based on a property of 
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computer programs called locality of reference. Analysis of programs 

shows that most of their execution time is spent on routines in which many 

instructions are executed repeatedly. These instructions may constitute a 

simple loop, nested loops, or a few procedures that repeatedly call each 

other. The actual detailed pattern of instruction sequencing is not 

important – the point is that many instructions in localized areas of the 

program are executed repeatedly during some time, and the remainder of 

the program is accessed relatively infrequently. This is referred to as the 

locality of reference. It manifests itself in two ways: temporal and spatial. 

The first means that a recently executed instruction is likely to be executed 

again very soon. The spatial aspect means that instructions in close 

proximity to a recently executed instruction (with respect to the 

instructions’ addresses) are also likely to be executed soon. 

 If the active segments of a program can be placed in a fast cache memory, 

then the total execution time can be reduced significantly. Conceptually, 

operation of a cache memory is very simple. The memory control 

circuitry is designed to take advantage of the property of locality of 

reference. The temporal aspect of the locality of reference suggests that 

whenever an information item (instruction or data) is first needed, 

this item should be brought into the cache where it will hopefully remain 

until it is needed again. The spatial aspect suggests that instead of fetching 

just one item from the main memory to the cache, it is useful to fetch 

several items that reside at adjacent addresses as well. We will use the 

term block to refer to a set of contiguous address locations of some size. 

Another term that is often used to refer to a cache block is cache line. 

 The cache memory that is included in the memory hierarchy can 

be split or unified/dual. A split cache is one where we have a separate data 

cache and a separate instruction cache. Here, the two caches work in 

parallel, one transferring data and the other transferring instructions. A 

dual or unified cache is wherein the data and the instructions are stored in 

the same cache. A combined cache with a total size equal to the sum of 

the two split caches will usually have a better hit rate. This higher rate 

occurs because the combined cache does not rigidly divide the number of 

entries that may be used by instructions from those that may be used by 

data. Nonetheless, many processors use a split instruction and data cache 

to increase cache bandwidth. 

 When a Read request is received from the processor, the contents of a 

block of memory words containing the location specified are transferred 

into the cache. Subsequently, when the program references any of the 

locations in this block, the desired contents are read directly from the 

cache. Usually, the cache memory can store a reasonable number of 

blocks at any given time, but this number is small compared to the total 

number of blocks in the main memory. The correspondence between the 

main memory blocks and those in the cache is specified by a mapping 

function. When the cache is full and a memory word (instruction or data) 

that is not in the cache is referenced, the cache control hardware must 
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decide which block should be removed to create space for the new block 

that contains the referenced word. The collection of rules for making this 

decision constitutes the replacement algorithm. 

 Therefore, the three main issues to be handled in cache memory are 

 Cache placement – where do you place a block in the cache? 

 Cache identification – how do you identify whether the requested 

information is available in the cache or not? 

 Cache replacement – which block will be replaced in the cache, making 

way for an incoming block? 

These questions are answered and explained with an example main 

memory size of 1MB (the main memory address is 20 bits), a cache 

memory of size 2KB and a block size of 64 bytes. Since the block size is 

64 bytes, you can immediately identify that the main memory has 214 

blocks and the cache has 25 blocks. That is, the 16K blocks of main 

memory have to be mapped to the 32 blocks of cache. There are three 

different mapping policies – direct mapping, fully associative mapping 

and n-way set associative mapping that are used. 

The word is then accessed in the cache. Although this process takes longer 

than accessing main memory directly, the overall performance can be 

improved if a high proportion of memory accesses are satisfied by the 

cache. Modern memory systems may have several levels of cache, 

referred to as Level 1 (L1), Level 2 (L2), and even, in some cases, Level 

3 (L3). In most instances the 

L1 cache is implemented right on the CPU chip. Both the Intel Pentium 

and the IBM-Motorola PowerPC G3 processors have 32 Kbytes of L1 

cache on the CPU chip.  

 

A cache memory is faster than main memory for a number of reasons. 

Faster electronics can be used, which also results in a greater expense in 

terms of money, size, and power requirements. Since the cache is small, 

this increase in cost is relatively small. A cache memory has fewer 

locations than a main memory, and as a result it has a shallow decoding 

tree, which reduces the access time.  

 

The cache is placed both physically closer and logically closer to the CPU 

than the main memory, and this placement avoids communication delays 

over a shared bus. A typical situation is shown in Figure 24. A simple 

computer without a cache memory is shown in the left side of the figure. 
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Figure 24: Placement of Cache in a Computer System 

 

This cache-less computer contains a CPU that has a clock speed of 400 

MHz, but communicates over a 66 MHz bus to a main memory that 

supports a lower clock speed of 10 MHz. A few bus cycles are normally 

needed to synchronize the CPU with the bus, and thus the difference in 

speed between main memory and the CPU can be as large as a factor of 

ten or more. A cache memory can be positioned closer to the CPU as 

shown in the right side of Figure 2, so that the CPU sees fast accesses over 

a 400 MHz direct path to the cache. 

 

3.2 Replacement Policies in Associative Mapped Caches 

When a new block needs to be placed in an associative mapped cache, an 

available slot must be identified. If there are unused slots, such as when a 

program begins execution, then the first slot with a valid bit of 0 can 

simply be used.  

When all of the valid bits for all cache slots are 1, however, then one of 

the active slots must be freed for the new block. Four replacement policies 

that are commonly used are: least recently used (LRU), first-in first-out 

(FIFO), least frequently used (LFU), and random. A fifth policy that is 

used for analysis purposes only, is optimal.  

 

For the LRU policy, a time stamp is added to each slot, which is updated 

when any slot is accessed. When a slot must be freed for a new block, the 

contents of the least recently used slot, as identified by the age of the 

corresponding time stamp, are discarded and the new block is written to 

that slot. The LFU policy works similarly, except that only one slot is 

updated at a time by incrementing a frequency counter that is attached to 

each slot. When a slot is needed for a new block, the least frequently used 

slot is freed.  

 

The FIFO policy replaces slots in round-robin fashion, one after the next 

in the order of their physical locations in the cache. The random 

replacement policy simply chooses a slot at random. The optimal 

replacement policy is not practical, but is used for comparison purposes 

to determine how effective other replacement policies are to the best 
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possible.  

 

That is, the optimal replacement policy is determined only after a program 

has already executed, and so it is of little help to a running program. 

Studies have shown that the LFU policy is only slightly better than the 

random policy. The LRU policy can be implemented efficiently, and is 

sometimes preferred over the others for that reason.  

 

Advantages and Disadvantages of the Associative Mapped Cache 

The associative mapped cache has the advantage that any main memory 

block can be placed into any cache slot. This means that regardless of how 

irregular the data and program references are, if a slot is available for the 

block, it can be stored in the cache. This results in considerable hardware 

overhead needed for cache bookkeeping. Each slot must have a 27-bit tag 

that identifies its location in main memory, and each tag must be searched 

in parallel. This means that in the example above the tag memory must be 

27 x 214 bits in size, and as described above, there must be a mechanism 

for searching the tag memory in parallel. Memories that can be searched 

for their contents, in parallel, are referred to as associative, or content-

addressable memories. By restricting where each main memory block can 

be placed in the cache, we can eliminate the need for an associative 

memory. This kind of cache is referred to as a direct mapped cache, which 

is discussed in the next section. 

Self-Assessment Exercises 1 

 

Answer the following questions by choosing the most suitable option: 

 

1. What is the primary purpose of cache memory? 

   A. To store large amounts of data permanently 

   B. To provide faster access to frequently used data 

   C. To backup important files 

   D. To connect to external devices 

 

2. Which replacement policy removes the least recently used item? 

   A. FIFO 

   B. LRU 

   C. Random 

   D. Optimal 

 

3. What are the two forms of locality of reference? 

   A. Spatial and temporal 

   B. Physical and logical 

   C. Static and dynamic 

   D. Sequential and random 
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Direct Mapped Cache 

Figure 24 shows a direct mapping scheme for a 232 word memory. As 

before, the memory is divided into 227 blocks of 25 = 32 words per block, 

and the cache consists of 214 slots. There are more main memory blocks 

than there are cache slots, and a total of 227/214 = 213 main memory 

blocks can be mapped onto each cache slot. In order to keep track of 

which of the 213 possible blocks is in each slot, a 13-bit tag field is added 

to each slot which holds an identifier in the range from 0 to 213 – 1. 

 

 
Figure 24: A Direct Mapping Scheme for Cache Memory 

This scheme is called “direct mapping” because each cache slot 

corresponds to an explicit set of main memory blocks. For a direct 

mapped cache, each main memory block can be mapped to only one slot, 

but each slot can receive more than one block. The mapping from main 

memory blocks to cache slots is performed by partitioning an address into 

fields for the tag, the slot, and the word as shown below: 

The 32-bit main memory address is partitioned into a 13-bit tag field, 

followed by a 14-bit slot field, followed by a five-bit word field. When a 

reference is made to a main memory address, the slot field identifies in 

which of the 214 slots the block will be found if it is in the cache. If the 

valid bit is 1, then the tag field of the referenced address is compared with 

the tag field of the slot. If the tag fields are the same, then the word is 

taken from the position in the slot specified by the word field. If the valid 

bit is 1 but the tag fields are not the same, then the slot is written back to 

main memory if the dirty bit is set, and the corresponding main memory 

block is then read into the slot. For a program that has just started 

execution, the valid bit will be 0, and so the block is simply written to the 

slot. The valid bit for the block is then set to 1, and the program resumes 

execution. 
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Advantages and Disadvantages of the Direct Mapped Cache 

The direct mapped cache is a relatively simple scheme to implement. The 

tag memory in the example above is only 13 x 214 bits in size, less than 

half of the associative mapped cache. Furthermore, there is no need for an 

associative search, since the slot field of the main memory address from 

the CPU is used to “direct” the comparison to the single slot where the 

block will be if it is indeed in the cache.  

This simplicity comes at a cost. Consider what happens when a program 

references locations that are 219 words apart, which is the size of the 

cache. This pattern can arise naturally if a matrix is stored in memory by 

rows and is accessed by columns. Every memory reference will result in 

a miss, which will cause an entire block to be read into the cache even 

though only a single word is used.  

Worse still, only a small fraction of the available cache memory will 

actually be used. Now it may seem that any programmer who writes a 

program this way deserves the resulting poor performance, but in fact, 

fast matrix calculations use power-of-two dimensions (which allows shift 

operations to replace costly multiplications and divisions for array 

indexing), and so the worst-case scenario of accessing memory locations 

that are 219 addresses apart is not all that unlikely.  

To avoid this situation without paying the high implementation price of a 

fully associative cache memory, the set associative mapping scheme can 

be used, which combines aspects of both direct mapping and associative 

mapping.  

 

3.3 Cache Performance 

Notice that we can readily replace the cache direct mapping hardware 

with associative or set associative mapping hardware, without making any 

other changes to the computer or the software. Only the runtime 

performance will change between methods. Runtime performance is the 

purpose behind using a cache memory, and there are a number of issues 

that need to be addressed as to what triggers a word or block to be moved 

between the cache and the main memory.  

Cache read and write policies are summarized in Figure 25. The policies 

depend upon whether or not the requested word is in the cache. If a cache 

read operation is taking place, and the referenced data is in the cache, then 

there is a “cache hit” and the referenced data is immediately forwarded to 

the CPU. When a cache miss occurs, then the entire block that contains 

the referenced word is read into the cache.  

In some cache organizations, the word that causes the miss is immediately 

forwarded to the CPU as soon as it is read into the cache, rather than 

waiting for the remainder of the cache slot to be filled, which is known as 

a load-through operation. For a non-interleaved main memory, if the word 
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occurs in the last position of the block, then no performance gain is 

realized since the entire slot is brought in before load-through can take 

place. For an interleaved main memory, the order of accesses can be 

organized so that a load-through operation will always result in a 

performance gain. 

 

 
 

Figure 25: Cache Read and Write Policies 

For write operations, if the word is in the cache, then there may be two 

copies of the word, one in the cache, and one in main memory. If both are 

updated simultaneously, this is referred to as write-through. If the write is 

deferred until the cache line is flushed from the cache, this is referred to 

as write-back.  

Even if the data item is not in the cache when the write occurs, there is 

the choice of bringing the block containing the word into the cache and 

then updating it, known as write-allocate, or to update it in main memory 

without involving the cache, known as write-no-allocate. Some 

computers have separate caches for instructions and data, which is a 

variation of a configuration known as the Harvard architecture (also 

known as a split cache), in which instructions and data are stored in 

separate sections of memory.  

Since instruction slots can never be dirty (unless we write self-modifying 

code, which is rare these days), an instruction cache is simpler than a data 

cache. In support of this configuration, observations have shown that most 

of the memory traffic moves away from main memory rather than toward 

it.  

Statistically, there is only one write to memory for every four read 

operations from memory. One reason for this is that instructions in an 

executing program are only read from the main memory, and are never 
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written to the memory except by the system loader. Another reason is that 

operations on data typically involve reading two operands and storing a 

single result, which means there are two read operations for every write 

operation.  

A cache that only handles reads, while sending writes directly to main 

memory can thus also be effective, although not necessarily as effective 

as a fully functional cache. As to which cache read and write policies are 

best, there is no simple answer. The organization of a cache is optimized 

for each computer architecture and the mix of programs that the computer 

executes. Cache organization and cache sizes are normally determined by 

the results of simulation runs that expose the nature of memory traffic. 

4.0 Summary 

In this unit, you have learnt that: 

Cache memory, also called CPU memory, is high-speed static random 

access memory (SRAM) that a computer microprocessor can access more 

quickly than it can access regular random access memory (RAM). 

A cache memory is faster than main memory and has fewer locations than 

a main memory. 

A cache is placed both physically closer and logically closer to the CPU 

than the main memory 

The physical memory is smaller than the size of the program, but is larger 

than any single routine. 

Self-Assessment Exercises 2 

 

Fill in the gaps in the sentences below with the most suitable words: 

 

1. In a direct mapped cache, each main memory block can be mapped to 

only ________ slot. 

 

2. Cache ________ occurs when the requested data is found in the cache. 

 

3. The ________ policy determines whether data is written to both cache 

and main memory simultaneously. 

4.0 Conclusion 

If the cache is designed properly then most of the time the processor will 

request memory words that are already in the cache. Cache is memory 

placed in between the processor and main memory. Cache is responsible 

for holding copies of main memory data for faster retrieval by the 

processor.Cache memory consists of a collection of blocks. Each block 

can hold an entry from the main memory. 

5.0 SUMMARY 

Cache memory, also called CPU memory, is high-speed static random 

access memory (SRAM) that a computer microprocessor can access more 

quickly than it can access regular random access memory (RAM). 

A cache memory is faster than main memory and has fewer locations than 

a main memory. 
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A cache is placed both physically closer and logically closer to the CPU 

than the main memory 

The physical memory is smaller than the size of the program, but is larger 

than any single routine. 

6.0 Tutor marked assignment 

For a direct mapped cache a main memory address is viewed as consisting 

of two fields list and define the two fields. 

7.1 Possible Answers to Self-Assessment Exercises 

 

Self-Assessment Exercise 1 

1. B 

2. B 

3. A 

 

Self-Assessment Exercise 2 

1. One 

2. Hit 

3. Write-through 
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