

IFT 212

COMPUTER ARCHITECTURE AND ORGANIZATION

Course Team Greg Onwodi (Developer/Writer) - NOUN

J. B. Awotunde (Reviewer) - UniIlorin

Prof Joshua Abah (Course Editor)

NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE

GUIDE

IFT 212 COURSE GUIDE

ii

©2025 by NOUN Press

National Open University of Nigeria

Headquarters

University Village

Plot 91, Cadastral Zone

Nnamdi Azikiwe Expressway

Jabi, Abuja

Lagos Office

14/16 Ahmadu Bello Way

Victoria Island, Lagos

e-mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

All rights reserved. No part of this book may be reproduced, in any form

or by any means, without exclusive permission in writing from the

publisher.

Printed 2009

Reviewed and Reprinted 2025

 ISBN:978-978-786-494-4

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CONTENTS PAGE

Module 1 Organization And Architecture 1

Unit 1 Introduction To Computer Architecture

And Organization ... 1

Unit 2 Instruction Sets Characteristics .. 15

Module 2 Computer Arithmetic .. 20

Unit 1 The Arithmetic Implementation 20

Unit 2 Control Flow Design/Operation 26

Module 3 Cpu Organization .. 54

Unit 1 Cpu Organization ... 54

Unit 2 The Arithmetic And Logic Unit 61

Unit 3 The Control Unit .. 69

Module 4 Instruction Set Architecture ... 80

Unit 1 General Overview Of Instruction Set Architecture 80

Unit 2 Instruction Cycle .. 94

Module 5 The Memory Systems ... 103

Unit 1 Computer Memory ... 103

Unit 2 Memory Hierarchy ... 114

Unit 3 Virtual Memory .. 123

Unit 4 Cache Memory ... 133

MAIN

COURSE

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

1

MODULE 1 ORGANIZATION AND ARCHITECTURE

Unit 1 Introduction to Computer Architecture

and Organization

Unit 2 Instruction Sets Characteristics

and Functions

Unit 3 Types of Operands

UNIT 1 INTRODUCTION TO COMPUTER

ARCHITECTURE AND ORGANIZATION

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Computer Organization and Architecture

3.2 Structure and Function

3.3 Computer Components

3.4 Instruction Fetch and Execute

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

1.0 INTRODUCTION

Despite the variety and pace of change in the computer field, certain

fundamental concepts consistently apply throughout. The application of

these concepts depends on the current state of technology and the

price/performance objectives of the designer.

Many computer manufacturers offer a family of computer models, all

with the same architecture but with differences in their organization. In a

class of computers called microcomputers, the relationship between

architecture and organization is very close. Changes in technology not

only influence organizations but also result in the introduction of more

powerful and complex architectures. However, because a computer

organization must be designed to implement a particular architectural

specification, a thorough treatment of organization requires a detailed

examination of the architecture as well.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

2

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• Explain the operational units of a computer system.

• Outline types of operands and operations specific by machine

instruction.

• Explain opcodes, operands, and addressing modes

3.0 MAIN CONTENT

3.1 COMPUTER ORGANIZATION AND ARCHITECTURE

Although it is difficult to give a precise definition, a consensus exists

about the general area covered by it. Computer organization refers to the

operational units and their interconnection that realize the architectural

specification.

Examples of architectural attributes include the instruction set, the

number of bits used to represent various data types (e. g numbers,

characters), I/O mechanism, and techniques for addressing memory.

Organizational attributes include hardware details transparent to the

programmer, such as control signals; interfaces between the computer

peripherals, and memory technology used.

In computer engineering, computer architecture is a set of rules and

methods that describe the functionality, organization, and implementation

of computer systems. The architecture of a system refers to its structure

in terms of separately specified components of that system and their

interrelationships.

Computer architecture consists of rules and methods or procedures that

describe the implementation, and functionality of the computer systems.

We can define computer architecture based on its performance,

efficiency, reliability, and cost of the computer system. It deals with

software and hardware technology standards.

3.2 STRUCTURE AND FUNCTION

A computer is a computer system, contemporary computers contain

millions of elementary electronic components.

• Structure: How the components are interrelated.

• Function: The operation of each component as part of the

structure.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

3

In terms of description, there are two choices: starting at the bottom and

building up to a complete description, or beginning with a top view and

decomposing the system into its subparts. Evidence from several fields

suggests that the top-down approach is the clearest and most effective.

The approach taken is that the computer be described from the top down.

Both the structure and functioning of a computer are simple. Figure 1

depicts the basic functions that a computer can perform. In general terms,

there are only four:

- Data processing

- Data storage

- Data movement

- Control

Figure 1: The Basic Functions of Computer

The computer, of course, must be able to process data. The data may take

a wide variety of forms, and the range of processing requirements ID

broad. It is also essential that a computer stores data. Even if the computer

is processing data on the fly (i.e. data come in and get processed and the

results go out immediately) the computer must temporarily store at least.

Those pieces of data that are being worked on at any given moment. Files

of data are stored on the computer for subsequent retrieval and update.

The computer must be able to move data between itself and the outside

world. The computer's operating environment consists of devices that

serve as either sources or destinations of data. When data are received

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

4

from or delivered to a device that is directly connected to the computer,

the process is known as input-output (I/O), and the device is referred to

as a peripheral. When data are moved over longer distances, to or from a

remote device, the process is known as data communications. Finally,

there must be control of these three functions. Ultimately, this control is

exercised by the individuals who provide the computer with instructions.

Within the computer, a control unit manages the resources of the

computer and orchestrates the performance of its functional parts in

response to those instructions.

There are four main structural components

- The central processing unit (CPU): Controls the operations of

the computer and performs its data processing functions; often

simply referred to as a processor.

- Main memory: Stores data

- I/O: Moves data between the computer and its external

environment.

- System interconnections: Some mechanism that provides for

communication among CPU, main memory, and I/O. A common

example of system interconnection is through a system bus,

consisting of several conducting wires to which all the other

components attach.

However, the most interesting and complex component is the CPU. Its

major structural components are as follows:

- Control unit: Controls the operations of the CPU and hence the

computer.

- Arithmetic and logic unit (ALU): Performs the computer data

processing functions.

- Registers: Provides storage internal to the CPU.

- CPU interconnection: Some mechanism that provides for

communication among the control unit, ALU, and registers.

3.3 COMPUTER COMPONENTS

Virtually all contemporary computer designs are based on concepts

developed by John Von Neumann at the Institute for Advanced Studies

Princeton. Such a design is referred to as the Von Neumann architecture

and is based on three key concepts:

• Data and instructions are stored in a single read-write memory.

• The contents of this memory are addressable by location, without

regard to the type of data contained there.

• Execution occurs sequentially (unless explicitly modified) from

one instruction to the next.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

5

There is a small set of basic logic components that can be combined in

various ways to store binary data and to perform arithmetic and logical

operations on that data. If there is a particular computation to be

performed, a configuration of logic components designed specifically for

that computation could be constructed. We can think of the process of

connecting the various components in the desired configuration as a form

of programming. The resulting "program" is in the form of hardware and

is termed a hardwired program.

Now consider this alternative. Suppose we construct a general-purpose

configuration of arithmetic and logic functions. This set of hardware will

perform various functions on data depending on control signals applied to

the hardware. In the original case of customized hardware, the system

accepts data and produces results Figure 2a. With general-purpose

hardware, the system accepts data and control signals and produces

results. Thus, instead of rewiring the hardware for each new program, the

programmer merely needs to supply a new set of control signals.

How shall control signals be supplied? The answer is simple but subtle.

The entire program is a sequence of steps. At each step, some arithmetic

or logical operation is performed on some data. For each step, a new set

of control signals is needed. Let us provide a unique code for each

possible set of control signals, and let us add to the general-purpose

hardware a segment that can accept a code and generate control signals

(Figure 2b).

Figure 2. Hardware and Software Approaches

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

6

Programming is now much easier. Instead of rewiring the hardware for

each new program, all we need to do is provide a new sequence of codes.

Each code is, in effect, an instruction, and part of the hardware interprets

each instruction and generates control signals. To distinguish this new

method of programming, a sequence of codes or instructions is called

software.

Figure 2b indicates two major components of the system: an instruction

interpreter and a module of general-purpose arithmetic and logic

functions. These two constitute the CPU. Several other components are

needed to yield a functioning computer. Data and instructions must be put

into the system. For this, we need some sort of input module. This module

contains basic components for accepting data and instructions in some

form and converting them into an internal form of signals usable by the

system. A means of reporting results is needed, and this is in the form of

an output module. Taken together, these are referred to as I10

components.

One more component is needed. An input device will bring instructions

and data in sequentially. But a program is not invariably executed

sequentially; it ma, jump around (e.g., the IAS jump instruction).

Similarly, operations on data may require access to more than just one

element at a time in a predetermined sequence Thus, there must be a place

to store temporarily both instructions and data. That module is called

memory, or main memory to distinguish it from external storage of

peripheral devices. Von Neumann pointed out that the same memory

could be used to store both instructions and data.

Figure 3 illustrates these top-level components and suggests the

interaction among them. The CPU exchanges data with memory. For this

purpose, it typically makes use of two internal (to the CPU) registers: a

memory address register (MAR), which specifies the address in memory

for the next read or write, and a memory buffer register (MBR), which

contains the data to be written into memory receives the data read from

memory. Similarly, an I/0 address register (I/OAR specifies a particular

1/0 device. An I/0 buffer (I/OBR) register is used for the exchange of data

between an I/0 module and the CPU.

A memory module consists of a set of locations, defined by sequentially

numbered addresses. Each location contains a binary number that can be

interpreted as either an instruction or data. A 1/0 module transfers data

from external devices' CPU and memory, and vice versa. It contains

internal buffers for temporarily holding these data until they can be sent

on.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

7

Having looked briefly at these major components, we now turn to an

overview of how these components function together to execute

programs.

Figure 3. Computer Components Top-level View

The key elements of program execution. In its simplest form, instruction

processing consists of two steps: The processor reads (fetches)

instructions from memory one at a time and executes each instruction.

Program execution consists of repeating the process of instruction fetch

and instruction execution. The instruction execution may involve several

operations and depends on the nature of the instruction (see, for example,

the lower portion of Figure 2.4).

The processing required for a single instruction is called an instruction

cycle.

The two steps are referred to as the fetch cycle and the execute cycle.

Program execution halts only if the machine is turned off, some sort of

unrecoverable error occurs, or a program instruction that halts the

computer is encountered.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

8

3.4 Instruction Fetch and Execute

At the beginning of each instruction cycle, the processor fetches an

instruction from memory. In a typical processor, a register called the

program counter (PC) holds the address of the instruction to be fetched

next. Unless told otherwise, the processor. Using the simplified two-step

description given previously, the instruction cycle is depicted in Figure 4.

Figure 4. Basic Instruction Cycle

Explain an instruction fetch using the components of Figure 3

1) The PC holds the address of the next instruction to execute. The

contents of the PC are placed on the System Bus and the PC is

incremented to the next instruction to be executed.

2) The instruction from Main Memory is retrieved and placed into the

IR using the System Bus.

Note: The MAR and MBR registers are also used in the process but for

now we will ignore their use for simplicities sake.

The processor will then interpret the instruction and perform an action.

What are these possible actions? always increments the PC after each

instruction fetch so that it will fetch the next instruction in sequence (i.e.,

the instruction located at the next higher memory address). So, for

example, consider a computer in which each instruction occupies one 16-

bit word of memory. Assume that the program counter is set to location

300. The processor will next fetch the instruction at location 300. On

succeeding instruction cycles, it will fetch instructions from locations

301, 302, 303, and so on. This sequence may be altered, as explained

presently.

The fetched instruction is loaded into a register in the processor known as

the instruction register (IR). The instruction contains bits that specify the

action the processor is to take. The processor interprets the instruction and

performs the required action. In general, these actions fall into four

categories:

i. Processor-memory: Data may be transferred from processor to

memory or from memory to processor.

ii. Processor-I/O: Data may be transferred to or from a peripheral

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

9

device be transferring between the processor and an I/O module.

iii. Data processing: The processor may perform some arithmetic or

logic operation on data.

iv. Control: An instruction may specify that the sequence of

execution is altered. For example, the processor may fetch an

instruction from location 149, which specifies that the next

instruction is from location 182. The processor will remember this

fact by setting the program counter to 182. Thus, on the next fetch

cycle, the instruction will be fetched from location 182 rather than

150.

An instruction's execution may involve a combination of these actions.

The processor contains a single data register called an accumulator (AC).

Both instructions and data are 16 bits long. Thus, it is convenient to

organize memory using 16-bit words. The instruction format provides 4

bits for the opcode so that there can be as many as 24 = 16 different

opcodes, aup to 212 = 4096 (4K) words of memory can be directly

addressed. Address 941 and stores the result in the latter location. Three

instructions, which be described as three fetch and three execute cycles,

are required:

1. The PC contains 300, the address of the first instruction. This

instruction value is 1940 in hexadecimal) is loaded into the

instruction register IR anPC is incremented. Note that this process

involves the use of a memory dress register (MAR) and a memory

buffer register (MBR). For simply these intermediate registers are

ignored.

2. The first 4 bits (first hexadecimal digit) in the IR indicate that the

AC is loaded. The remaining 12 bits (three hexadecimal digits)

specify the ac (940) from which data are to be loaded.

3. The next instruction (5941) is fetched from location 301 and

incremented.

4. The old contents of the AC and the contents of location 941 are

added an result is stored in the AC.

5. The next instruction (2941) is fetched from location 302 and the F

is incremented.

6. The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch cycle

execute cycle, are needed to add the contents of location 940 to the

contents C With a more complex set of instructions, fewer cycles would

be needed. Some processors, for example, included instructions that

contain more than one address. Thus the execution cycle for a particular

instruction on such prop could involve more than one reference to

memory. Also, instead of memory references, an instruction may specify

an I/O operation. Figure 5 shows the characteristics of a hypothetical

machine.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

10

Figure 5. Characteristics of Hypothetical Machine

Program Counter (PC) = Address of Instruction

Instruction Register (IR) = Instruction begin executed

Accumulator (AC) = Temporary storage

 (c) Internal CPU Registers

0001 = Load AC from Memory

0010 = Store AC to Memory

0101 = Add to AC from Memory

(d) Partial list of opcodes

For example, the PDP-11 processor includes an instruction, expressed

physically as ADD B, A, that stores the sum of the contents of memory

location B into memory location A. A single instruction cycle with the

following steps

▪ Fetch the ADD instruction.

▪ Read the contents of memory location A into the processor.

▪ Read the contents of memory location B into the processor. To

contents of A are not lost, the processor must have at least two

registers storing memory values, rather than a single accumulator.

▪ Add the two values

▪ Write the result from the processor to memory location A.

Thus, the execution cycle for a particular instruction may involve more

than one reference to memory. Also, instead of memory references, an

instructor specifies an I/O operation.

For any given instruction cycle, some states -null and others may be

visited more than once. The states can be described as follows:

Instruction address calculation (ac): Determine the address of the next

instruction to be executed. Usually, this involves adding a fixed number

to the address of the previous instruction. For example, if each instruction

is 16 bits long and memory is organized into 16-bit words, then add 1 to

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

11

the previous ad- dress. If, instead, memory is organized as individually

addressable 8-bit bytes, then add 2 to the previous address.

Figure 6. The Instruction Cycle State with Interrupts

Instruction fetch (if): Read instruction from its memory location into the

processor.

Instruction operation decoding (iod): Analyze instruction to determine

the type of operation to be performed and operand(s) to be used.

Operand address calculation (oac): If the operation involves reference

to an operand in memory or available via I/O, then determine the address

of the operand.

 ,

Operand fetch (of): Fetch the operand from memory or read it in from

1/O. Data operation (do): Perform the operation indicated in the

instruction. Operand store (os): Write the result into memory or out to I/O.

States in the upper part of Figure 6 involve an exchange between the

processor and either memory or a 1/O module. States in the lower part of

the diagram involve only internal processor operations. The oac state

appears twice, because an instruction may involve a read, a write, or both.

However, the action performed during that state is fundamentally the

same in both cases and so only a single state identifier is needed. Also

note that the diagram allows for multiple operands and multiple results

because some instructions on some machines require this. For example,

the PDP-11 instruction ADD A, B results in the following sequence of

states: iac, if, iod, oac, of, oac, of, do, oac, os.

Finally, on some machines, a single instruction can specify an operation

to be performed on a vector (one-dimensional array) of numbers or a

string (one- dimensional array) of characters. As Figure 6 indicates, this

would involve repetitive operand fetch and/or store operations.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

12

 Table 1. Classes of Interrupts

Program Generated by some conditions that occur as a result of an

instruction execution, such as arithmetic overflow,

division by zero, attempt to execute an illegal machine

instruction, or reference outside a user’s allowed memory

space.

Timer Generated by a timer within the processor. This allows the

operating system to perform certain functions regularly.

I/O Generated by an I/O controller, to signal normal

completion of an operation to signal a variety of error

conditions.

Hardware

failure

Generated by a failure such as power failure or memory

parity error.

Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. What is the primary difference between computer organization and

computer architecture?

A. Organization deals with software while architecture deals

with hardware

B. Architecture refers to attributes visible to programmers

while organization refers to operational units and their

interconnections

C. Organization is more important than architecture in system

design

D. There is no difference between the two terms

2. Which of the following is NOT one of the four basic functions of

a computer?

A. Data processing

B. Data storage

C. Data encryption

D. Data movement

3. What are the main structural components of a computer system?

A. CPU, Main memory, I/O, System interconnections

B. Hardware, Software, Data, Procedures

C. Input, Processing, Output, Storage

D. Registers, ALU, Control Unit, Cache

Self-Assessment Exercises 2

Fill in the gaps in the sentences below with the most suitable words:

1. The ________ processing unit (CPU) controls the operations of the

computer and performs its data processing functions.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

13

2. The Von Neumann architecture is based on three key concepts, one

of which is that data and ________ are stored in a single read-write

memory.

3. The instruction cycle consists of two main steps: the ________

cycle and the ________ cycle.

4.0 CONCLUSION

Computer architecture and organization form the foundation of modern

computing systems. Architecture defines what the system can do - the

instruction set, data types, addressing modes, and interface specifications

visible to programmers. Organization, on the other hand, determines how

these architectural specifications are implemented through hardware

components and their interconnections. The Von Neumann architecture

remains the dominant model, with its key principles of stored program

concept, sequential execution, and unified memory for instructions and

data. Understanding the relationship between structure and function,

along with the basic computer components (CPU, memory, I/O, and

system interconnections), provides the essential knowledge needed to

comprehend how modern computers operate and execute instructions.

5.0 SUMMARY

This unit introduced the fundamental concepts of computer architecture

and organization. Computer architecture refers to the attributes of a

system visible to programmers, including instruction sets, data types, and

addressing mechanisms. Computer organization deals with the

operational units and their interconnections that realize the architectural

specifications. The four basic functions of a computer are data processing,

data storage, data movement, and control. A computer system consists of

four main structural components: the CPU (which includes the control

unit, ALU, and registers), main memory, I/O systems, and system

interconnections. The Von Neumann architecture, based on the stored

program concept, sequential execution, and unified memory, forms the

foundation of modern computer design. The instruction cycle, consisting

of fetch and execute phases, describes how computers process individual

instructions.

6.0 TUTOR-MARKED ASSIGNMENT

1. Explain the distinction between computer architecture and

computer organization. Provide two examples of architectural

attributes and two examples of organizational attributes. (10

marks)

2. Describe the four basic functions of a computer system and explain

how these functions interact during program execution. (8 marks)

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

14

3. The Von Neumann architecture is fundamental to modern

computer design. List and explain the three key concepts on which

this architecture is based. Discuss one advantage and one

limitation of this architectural approach. (12 marks)

Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1. B

2. C

3. A

Self-Assessment Exercise 2

1. Central

2. Instructions

3. Fetch, execute

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

15

UNIT 2 INSTRUCTION SETS CHARACTERISTICS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Instruction Formats

3.1.1 Instruction Length

3.2 Instruction Sets Characteristics

3.2.1 Elements of Machine Instruction

3.2.2 Instruction Representation

3.3 Instruction Set Design

4.0 Conclusion

5.0 Summary

6.0 Tutor- Marked Assignment

7.0 References/ Further Reading

1.0 INTRODUCTION

One boundary where the computer designer and the computer

programmer can view the same machine is the machine instruction set.

From the designers’ point of view, the machine instruction set provides

the functional requirements for the processor. Implementing the processor

is a task that largely involves implementing the machine instruction set.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• Explain the instruction format

• Understand the instruction length and characteristics

3.0 MAIN CONTENT

3.1 INSTRUCTION FORMATS

An instruction format defines the layout of the bits of an instruction in

terms of its constituent fields. An instruction format must include an

opcode and implicitly or explicitly, zero or more operands, and The

format must implicitly and explicitly, indicate the addressing mode for

each operand. For most instruction sets, more than one instruction format

is used.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

16

3.1.1 INSTRUCTION LENGTH

The most basic design issue to be faced is the instruction format length.

These decisions effects and are affected by, memory size, memory

organization bus structure process complexity, and processor speed. This

decision determines the richness and flexibility of the machine.

3.2 INSTRUCTION SETS CHARACTERISTICS

The operation of the processor is determined by the instructions it

executes referred to as machine instructions or computer instructions. The

collection of different instructions that the processor can execute is

referred to as the processor's instruction set.

3.2.1 ELEMENTS OF MACHINE INSTRUCTION

These elements are as follows:

- Operation code: Specifies the operation to be performed (e.g.,

ADD, I/O). The operation is specified by a binary code, known as

the operation code or opcode.

- Source operand reference: This operation may involve one or

more source operands, that is operands that are inputs for the

operation

- Results from operands reference: The operation may produce a

result

- Next instruction reference: This tells the processor where to fetch

the next instruction after the execution of this instruction is

complete.

The address of the next instruction to be fetched could be either a real

address or a virtual address, depending on the architecture. Generally, the

distinction is transparent to the instruction set architecture. In most cases,

the next instruction to be fetched immediately follows the current

instruction. In most cases, there is no explicit reference to the next

instruction when an explicit reference is needed then the main memory or

virtual memory address must be supplied. Source and result operands can

be in one of four areas.

- Main or virtual memory: As with the next instruction references,

the main or virtual memory address must be supplied.

- Processor register: With rare exception, a processor contains one

or more registers that may be referenced by machine instructions.

If only one register exits reference to it may be implicit. If more

than one register exists, then each register is assigned a unique

name or number, and the instruction must contain the number of

the designed register

- Immediate: The value of the operand is contained in a field in the

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

17

instruction being executed.

- I/O device: The instruction must specify the I/O module and

device for operation. If memory-mapped I/O is used, this is just

another main or virtual memory address

Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. Which of the following is NOT an element of a machine instruction?

 A. Operation code

 B. Source operand reference

 C. Memory address register

 D. Next instruction reference

2. What does the opcode specify in an instruction?

 A. The memory location of data

 B. The operation to be performed

 C. The size of the operand

 D. The addressing mode

3. How many different opcodes can be represented with 4 bits?

 A. 4

 B. 8

 C. 12

 D. 16

3.2.2 INSTRUCTION REPRESENTATION

In a computer, each instruction is represented by a sequence of bits. The

instruction is divided into fields corresponding to the constituent elements

of the instruction. Opcodes are represented by abbreviations called

mnemonics that indicate their operation. Common examples include:

ADD add

SUB SUBTRACT

MUL multiply

DIV divide

LOAD Load data form memory STOR Store data to

memory

Operands are also represented in a symbolic manner. For example

the instruction ADD, R, Y.

This may mean adding the value contained in data location Y to the

contents of register R. In this example, Y refers to the address of a location

in memory, and R refers to a particular register. Note that the operation is

performed on the contents of a location, not on its address:

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

18

Thus, it is possible to write a machine-language program in symbolic

form.

X= 413

Y= 414

A simple program accepts this symbolic input, converts opcodes and

operand references to binary form, and constructs binary machine

instructions. However, symbolic machine language remains a useful tool

for describing machine instructions, and we will use it for that purpose.

Assume that variables X and Y correspond to locations 413 and 414,

respectively. Assuming a simple set of machine instructions, this

operation can be accomplished with three instructions.

1. Load a register with the content of memory location 413.

2. Add the contents of memory location 414 to the register.

3. Store the contents of the register in memory location 413.

3.3 INSTRUCTION SET DESIGN

One of the most interesting and most analyzed, aspects of computer

design is instruction set is very complex because it affects so many aspects

of the computer system. The instruction defines any of the functions

performed by the processor and thus has a significant effect on the

implementation of the process. The instruction set is the programmer’s

means of controlling the processor. Thus, programmer requirements must

be considered in designing the instruction set. The most important of these

fundamental design issues include the following:

- Operation repertoire: How many and which operations to

provide and how complex operations should be.

- Data types: The various types of data upon which operations are

performed.

- Instruction format: Instruction length (in nits) number of assesses

size of various fields and so on.

- Registers: Number of processor registers that can be referenced

by instructions and their use.

- Addressing: The mode or modes by which the address of an

operand is specified.

These issues are highly interrelated and must be considered together in

designing an instruction set.

4.0 CONCLUSION

Despite the variety and pace of change in the computer field, certain

fundamental concept applies consistently throughout. The application of

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

19

these concepts depends on the current state of technology and the

price/performance objectives of the designer.

5.0 SUMMARY

Computer organization refers to the operational units and their

interconnections that realize the architectural specification.

Computer architecture refers to those attributes of a system visible to a

programmer or those attributes that have a direct impact on the logical

execution of a program. The collection of different instructions that the

processor can execute is referred to as the processor’s instruction set and

an to instruction format defines the layout of the bits of instruction, in

terms of its constituents’ fields.

Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1. C

2. B

3. D

6.0 TUTOR- MARKED ASSIGNMENT

1. What in general terms is the distinction between computer

organization and computer architecture?

2. What are the four main functions of a computer?

3. List and briefly explain five important instruction set design issues

7.0 REFERENCES/ FURTHER READING

Hennessy, J. L., & Patterson, D. A. (2011). Computer architecture: a

quantitative approach. Elsevier.

Patterson, D. A., Brooks Jr, F. P., Sutherland, I. E., & Thacker, C. P.

(2011). Computer architecture. Elsevier Science.

Null, L. (2023). Essentials of Computer Organization and Architecture.

Jones & Bartlett Learning.

Sloss, A; Symes, D; and Wright, C.ARM system developers guide an

Fransisco Morgan Kaufmann, 2004

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

20

MODULE 2 COMPUTER ARITHMETIC

UNIT 1: The Arithmetic Implementation

UNIT 2: Control Flow Design/Implementation

UNIT 1 THE ARITHMETIC IMPLEMENTATION

1.0 Introduction

2.0 Objectives

3.0 Main content

3.1 The arithmetic and basic unit

3.2 Integer representation

3.3 Integer Arithmetic

3.4 Floating point representation

3.5 Floating point arithmetic

4.0 Conclusion

5.0 Summary

6.0 T.M.A

7.0 Reference and Further Reading

1.0 INTRODUCTION

This unit focuses on the most complex aspect of the ALU, computer

arithmetic. Computer arithmetic is commonly performed on two very

different types of numbers: integer and floating point. In both cases, the

representation chosen is a crucial design issue and is treated first.

Computer arithmetic is the branch of computer science that deals with the

representation and manipulation of numerical quantities in a computer

system. Here are some basic concepts and operations involved in

computer arithmetic:

1. Number systems: Computers use different number systems to

represent numerical quantities, including binary (base 2), decimal

(base 10), and hexadecimal (base 16) systems. In binary system,

each digit can only be either 0 or 1, while in decimal system, each

digit can be any of the 10 digits from 0 to 9.

2. Arithmetic operations: The basic arithmetic operations used in

computer arithmetic are addition, subtraction, multiplication, and

division. These operations are usually performed using arithmetic

circuits within the CPU.

3. Overflow: In computer arithmetic, overflow occurs when the result

of an arithmetic operation is too large to be represented in the

available number of bits. This can result in incorrect or unexpected

results.

4. Floating-point arithmetic: Floating-point arithmetic is used to

represent and perform operations on non-integer numbers. It

involves representing a number as a combination of a mantissa (or

significand) and an exponent.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

21

5. Round-off errors: Round-off errors occur in floating-point

arithmetic due to the limited precision of the number

representation. This can result in small inaccuracies in the

computed results.

6. Bitwise operations: Bitwise operations are used to manipulate

individual bits in a number. The basic bitwise operations include

AND, OR, XOR, and NOT.

7. Two’s complement representation: Two’s complement

representation is a method of representing negative numbers in

binary. In this representation, the most significant bit is used as a

sign bit, with 0 indicating a positive number and 1 indicating a

negative number.

Overall, computer arithmetic is a fundamental aspect of computer science

and is used in a wide range of applications, including scientific

computing, financial analysis, and digital signal processing.

2.0 OBJECTIVES

At the end of this unit, you should be able to

Recognize and explain the importance of various bases in computing.

Perform arithmetic operations with floating-point numbers.

Describe the fixed-point number representation and its applications.

3.1 THE ARITHMETIC AND LOGIC UNIT

The arithmetic and logic unit (ALU) is that part of the computer that

performs arithmetic and logical operations on data. All of the other

elements of the computer system- Control unit, registers memory, I/0- are

there mainly to bring into the ALU for it to process and then take the result

back out.

An ALU and all electronic components in the computers are based on the

use of simple digital logic devices that can store binary digits and perform

simple Boolean logic operations. Data are presented to the ALU in

registers and the results of an operation are stored in registers. These

registers are temporary storage locations within the processor that are

connected by signal paths to the ALU. The ALU may also set flags as the

result of an operation. For example, an overflow flag is set to 1 if the result

of a computation exceeds the length of the register into which it is to be

stored. The flag values are also stored in registers within the processor.

The control unit provides signals that control the operation of the ALU

and the movement of the data into and out of the ALU.

Representing and storing numbers were the basic operations of the

computers of earlier times. The real go came when computation,

manipulating numbers like adding and multiplying came into the picture.

These operations are handled by the computer’s arithmetic logic unit

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

22

(ALU). The ALU is the mathematical brain of a computer. The first ALU

(Arithmetic Logic Unit) was indeed the INTEL 74181, which was

implemented as part of the 7400 series TTL (Transistor-Transistor Logic)

integrated circuits. It was released by Intel in 1970.

ALU is a digital circuit that provides arithmetic and logic operations. It is

the fundamental building block of the central processing unit of a

computer. A modern central processing unit(CPU) has a very powerful

ALU and it is complex in design. In addition to ALU modern CPU

contains a control unit and a set of registers. Most of the operations are

performed by one or more ALUs, which load data from the input

register. Registers are a small amount of storage available to the CPU.

These registers can be accessed very fast. The control unit tells ALU what

operation to perform on the available data. After

calculation/manipulation, the ALU stores the output in an output register.

3.2 INTEGER REPRESENTATION

In the binary number, arbitrary numbers can be represented with just the

digits zero and the minis sign, and the period or radix point.

-1101.01012= -13.312510

For purposes of computer storage and processing, however, we do not

have the benefits of minus signs and periods. Only binary digits (0 and 1)

may be used

to represent numbers. If we are limited to non-negative integers, the

representation is straight forward.

An 8-bit word can represent the numbers from 0 to 255, including

00000000 = 0

00000001 = 1

00101001 = 41

10000000 = 128

11111111 = 255

In general, if an n-bit sequence of binary digits is interpreted as an

unsigned integer, A it value is

𝐴 = 𝑛 − 1
∑ 2𝑖 𝑎𝑖

 2 = 0

In going from the first to the second equation, we require that the least

significant n - 1 bits do not change between the two representations. Then

we get to next to the last equation, which is only true if all of the bits in

positions theorem 2 are 1. Therefore, the sign-extension rule works.

Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. What is the range of numbers that can be represented using 8-bit

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

23

unsigned binary?

 A. 0 to 127

 B. -128 to 127

 C. 0 to 255

 D. -255 to 255

2. In two's complement representation, what does the most significant bit

represent?

 A. The magnitude of the number

 B. The sign of the number

 C. The decimal point location

 D. The base of the number system

3. What is the primary advantage of two's complement representation?

 A. It uses less memory

 B. It simplifies arithmetic operations

 C. It allows larger numbers

 D. It is easier to understand

Fixed-point representation

Finally, we mention that the representations discussed in this section are

sometimes referred to as fixed points. This is because the radix point

(binary point) is fixed and assumed to be to the right of the rightmost digit.

The programmer can use the representation for binary fractions by scaling

the numbers so that the binary poor implicitly positioned at some other

location.

Negative Number Representation

Sign Magnitude

Sign magnitude is a very simple representation of negative numbers. In

sign-magnitude, the first bit is dedicated to representing the sign and

hence it is called the sign bit.

The sign bit ‘1’ represents a negative sign.

The sign bit ‘0’ represents a positive sign.

In the sign-magnitude representation of n-bit number, the first bit will

represent the sign, and the rest n-1 bits represent the magnitude of the

number.

For example,

+25 = 011001

Where 11001 = 25

And 0 for ‘+’

-25 = 111001

Where 11001 = 25

And 1 for ‘-‘.

Range of number represented by sign magnitude method = -(2n-1-1)

to +(2n-1-1) (for n bit number)

But there is one problem in sign-magnitude and that is we have two

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

24

representations of 0

+0 = 000000

– 0 = 100000

2’s complement method

To represent a negative number in this form, first we need to take the 1’s

complement of the number represented in simple positive binary form and

then add 1 to it.

For example:

(-8)10 = (1000)2

1’s complement of 1000 = 0111

Adding 1 to it, 0111 + 1 = 1000

So, (-8)10 = (1000)2

Please don’t get confused with (8)10 =1000 and (-8)10=1000 as with 4 bits,

we can’t represent a positive number more than 7. So, 1000 is representing

-8 only.

Range of number represented by 2’s complement = (-2n-1 to 2n-1 – 1)

 Floating point representation of numbers

32-bit representation floating point numbers IEEE standard

Normalization

• Floating point numbers are usually normalized

• The exponent is adjusted so that the leading bit (MSB) of the

mantissa is 1

• Since it is always 1 there is no need to store it

• Scientific notation where numbers are normalized to give a single

digit before the decimal point like in a decimal system e.g. 3.123 x 103

Some insight into two complement addition and subtraction can be gained

by looking at a geometric depiction. The circle in the upper half of each

part of the figure is formed by selecting the appropriate segment of the

number line and joining the endpoints. Note that when the numbers are

laid out on a circle, the twos complement of any number are horizontally

opposite that number (indicated by dashed horizontal lines). Starting at

any number on the circle, we can add positive k (or subtract negative k),

to that number by moving k positions clockwise, and we can subtract

positive k (of add negative k) from that number by moving k positions

counterclockwise. If an arithmetic operation results in traversal of the

point where the endpoints are joined, an incorrect answer is given

(overflow).

The central element is a binary adder, which presents two numbers for

addition and produces a sum and an overflow indication. The binary adder

treats the two numbers as unsigned integers. In addition, the two numbers

are presented to the adder from two registers, designated in this case as A

and B registers. The result may be stored in one of these registers or a

third. The overflow indication is stored in a 1-bit overflow flag (0 = no

overflow; I = overflow). For subtraction, the

4.0 CONCLUSION

Numbers are represented in binary form and the algorithms used for basic

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

25

arithmetic operators are add, subtract, multiply, and divide

5.0 SUMMARY

- An ALU and all electronic components in the digital logic devices

that store binary digits and perform simple Boolean logic operations

- Overflow rule occurs when two numbers positive or negative

numbers are added and the result of the addition has the opposite sign.

- Subtraction flow is to subtract one number (subtracted) from

another (minuend) take the two compliments (negation) of the subtrahend

and hold it to the minuend.

Floating point numbers are expressed as a number (significant) multiplied

by a constant (base) raised to some integer power (exponent). It can be

used to represent very large and very small numbers.

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1. C

2. B

3. B

6.0 TUTOR- MARKED ASSIGNMENT

1. What is a sign-extension rule for two

 compliment numbers?

2. Find the following differences using two complement arithmetic:

a. 1111011 b. 10101110 c. 111110010111

-100100 -111-1-1 -111010010101

7.0 Reference and further reading

Null, L. (2023). Essentials of Computer Organization and Architecture.

Jones & Bartlett Learning.

Englander, I., & Wong, W. (2021). The architecture of computer

hardware, systems software, and networking: An information technology

approach. John Wiley & Sons.

Swartzlander, E. editor computer Arithimetic, volumes I and II. Los

Alamitiss, CA IEEE Computer society press, 1990.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

26

UNIT 2 CONTROL FLOW DESIGN/OPERATION

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Micro- Operation

3.2 Control of the Processor

3.3 Hard-wired implementation

3.4 Micro-programmed control

4.0 Conclusion

5.0 Summary

6.0 T. M.A

7.0 Reference and further reading

1.0 Introduction

The execution of an instruction involves the execution of a sequence of

sub-steps, generally called cycles. For example, an execution may consist

of fetch, indirect, execute, and interrupt cycles. Each cycle is in turn made

up is a sequence of more fundamental operations called micro-operations.

A single micro-operation generally involves transfer between registers a

register and an external bus, or a simple ALU operation.

2.0 At the end of this unit, you should be able to

- Understand that each cycle is in turn made up of a sequence of

more fundamental operations called micro-operations.

- Identify hardwired implementation

- Explain micro-programmed control

3.1 MICRO OPERATIONS

The prefix micro refers to the fact that each step is very simple and

accomplishes very little. To design a control unit each of the smaller

cycles involves a series of steps each of which involves the processor

registers. We refer to these steps as micro-operations. Micro operations

are the functional, or atomic operations of a processor.

Three. Now, we turn to the question of how these functions are performed

or, more specifically, how the various elements of the processor are

controlled to provide these functions. Thus, we turn to a discussion of the

control unit, which controls the operation of the processor.

We have seen that the operation of a computer, in executing a program,

consists of a sequence of instruction cycles, with one machine instruction

per cycle. Of course, we must remember that this sequence of instruction

cycles is not necessarily the same as the written sequence of instructions

that make up the program, because of the existence of branching

instructions. What we are referring to here is the execution time sequence

of instructions.

We have further seen that each instruction cycle is made up of several

smaller units. One subdivision that we found convenient is fetch, indirect,

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

27

execute, and interrupt, with only fetch and execute cycles always

occurring.

To design a control unit, however, we need to break down the description

further. In our discussion of pipelining in Chapter 12, we began to see that

further decomposition is possible. We will see that each of the smaller

cycles involves

a series of steps, each of which involves the processor registers. We will

refer to these steps as micro-operations. The prefix micro refers to the fact

that each step is very simple and accomplishes very little. Figure 15.1

depicts the relationship among the various concepts we have been

discussing. To summarize, the execution of a program consists of the

sequential execution of instructions. Each instruction is executed during

an instruction cycle made up of shorter subcycles (e.g., fetch, indirect,

execute, interrupt). The execution of each subcycle involves one or more

shorter operations, that is, micro- operations.

Micro-operations are the functional, or atomic, operations of a processor.

In this section, we will. examine micro-operations to gain an

understanding of how the events of any instruction cycle can be described

as a sequence of such m' operations. A simple example will be used. In

the remainder of this chapter.

-then show how the concept of micro-operations serves as a guide to the

design control unit. Figure 7 displayed the contituent element of a

program execution.

Figure 7. Contituent element of a program execution

'We begin by looking at the fetch cycle, which occurs at the beginning of

each instruction cycle and causes an instruction to be fetched from

memory.

Memory address register (MAR): Is connected to the address lines of the

bus. It specifies the address in memory for a read or write operation.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

28

Memory buffer register (MBR): Is connected to the data lines of the

system --

_ It contains the value to be stored in memory or the last value read from

melr

_ Program counter (PC): Holds the address of the next instruction to be

fetched

Instruction register (IR): Holds the last instruction fetched.

Let us look at the sequence of events for the fetch cycle from the point of

view of its effect on the processor registers. An example appears in Figure

5 at the beginning of the fetch cycle, the address of the next instruction to

be executed is in the program counter (PC); in this case, the address is

1100100. The first steto move that addresses to the memory address

register

(MAR) because this is only registered and connected to the address lines

of the system bus. The second step bring in the instruction. The desired

address (in the MAR) is placed on the adder. We have seen that the

operation of a computer, in executing a program, consists of a sequence

of instruction cycles, with one machine instruction per cycle. Of course,

we must remember that this sequence of instruction cycles is not

necessarily the same as the written sequence of instructions that make up

the program, because of the existence of branching instructions. What we

are referring to here is the execution time sequence of instructions.

We have further seen that each instruction cycle is made up of several

smaller units. One subdivision that we found convenient is fetch, indirect,

execute, and interrupt, with only fetch and execute cycles always

occurring.

To design a control unit, however, we need to break down the description

further. We will see that each of the smaller cycles involves a series of

steps, each of which involves the processor registers. We will refer to

these steps as micro-operations. The prefix micro refers to the fact that

each step is very simple and accomplishes very little. Figure 15.1 depicts

the relationship among the various concepts we have been discussing. To

summarize, the execution of a program consists of the sequential

execution of instructions. Each instruction is executed during an

instruction cycle made up of shorter subcycles (e.g., fetch, indirect,

execute, interrupt). The execution of each subcycle involves one or more

shorter operations, that is, micro-operations.

Micro-operations are the functional, or atomic, operations of a processor.

bus, the control unit issues a READ command on the control bus, and the

result appears on the data bus and is copied into the memory buffer

register (MBR). We also need to increment the PC by the instruction

length to get ready for the next instruction. Because these two actions

(read word from memory, increment PC) do not interfere with each other,

we can do them simultaneously to save time. The third step is to move the

contents of the MBR to the instruction register (IR). This frees up the

MBR for use during a possible indirect cycle.

29

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Thus, the simple fetch cycle consists of three steps and four micro-

operations. Each micro-operation involves the movement of data into or

out of a register. So long as these movements do not interfere with one

another, several of them can take place during one step, saving time.

Symbolically, we can write this sequence of events as follows:

t1: MAR E- (PC) t2: MBR <-- Memory PC <- (PC) + I t3: IR <-- (MBR)

where I is the instruction length. We need to make several comments

about this sequence. We assume that a clock is available for timing

purposes and that it emits regularly spaced clock pulses. Each clock pulse

defines a time unit. Thus, all time units are of equal duration. Each micro-

operation can be performed within the time of a single time unit. The

notation (ti, t2, t3) represents successive time units. In words, we have

I First-time unit: Move contents of PC to MAR.

Second-time unit: Move contents of the memory location specified by

MAR to MBR. Increment by I the contents of the PC.

Third-time unit: Move contents of MBR to IR.

Note that the second and third micro-operations both take place during

the second time unit. The third micro-operation could have been grouped

with the fourth without affecting the fetch operation:

t1: MAR <- (PC) t2: MBR <- Memory t3: PC E- (PC) + I IR <- (MBR)

The groupings of micro-operations must follow two simple rules:

The proper sequence of events must be followed. Thus (MAR - (PC))

must precede (MBR - Memory) because the memory read operation

makes use of the address in the MAR.

Conflicts must be avoided. One should not attempt to read to and write

from the same register in a one-time unit, because the results would be

unpredictable. For example, the micro-operations (MBR ¢-- Memory)

and (IR <- MBR) should not occur during the same time unit.

A final point worth noting is that one of the micro-operations involves an

addition. To avoid duplication of circuitry, this addition could be

performed by the ALU. The use of the ALU may involve additional

micro-operations, depending on the functionality of the ALU and the

organization of the processor. Whereas micro-operations are ignored in

that figure, this discussion shows the micro-operations needed to perform

the sub-cycles of the instruction cycle.

Once an instruction is fetched, the next step is to fetch source operands.

Continuing our simple example, let us assume a one-address instruction

format, with direct and indirect addressing allowed. If the instruction

specifies an indirect address, then an indirect cycle must precede the

execute cycle.

𝑡1: 𝑀𝐴𝑅 < − (𝐼𝑅(𝐴𝑑𝑑𝑟𝑒𝑠𝑠))

𝑡2: 𝑀𝐵𝑅 𝐹 − 𝑀𝑒𝑚𝑜𝑟𝑦

𝑡3: 𝐼𝑅(𝐴𝑑𝑑𝑟𝑒𝑠𝑠) 𝐹 − (𝑀𝐵𝑅(𝐴𝑑𝑑𝑟𝑒𝑠𝑠))

The address field of the instruction is transferred to the MAR. This is then

used to fetch the address of the operand. Finally, the address field of the

IR is updated from the MBR, so that it now contains a direct rather than

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

30

an indirect address.

The IR is now in the same state as if indirect addressing had not been used

and it is ready for the execution cycle. We skip that cycle for a moment,

to consider t interrupt cycle.

After the execute cycle, a test is made to determine whether any-:-_abled

interrupts have occurred. If so, the interrupt cycle occurs. The nature of

the cycle varies greatly from one machine to another. We present a very

simple sequeof events, as illustrated in Figure 12.8. We have

t1: MBR E- (PC)

t2: MAR F- Save Address PC F- Routine Address

t3: Memory E- (MBR)

In the first step, the contents of the PC are transferred to the MBR, so that

u- can be saved for return from the interrupt. Then the MAR is loaded

with the add- .at which the contents of the PC are to be saved, and the PC

is loaded with the add to the MAR and PC, respectively. In any case, once

this is done, the final step is to store the MBR, which contains the old

value of the PC, in memory. The processor is now ready to begin the next

instruction cycle.

The fetch, indirect, and interrupt cycles are simple and predictable. Each

involves a small, fixed sequence of micro-operations and, in each case,

the same micro-operations are repeated each time around.

This is not true of the execution cycle. Because of the variety of opcodes,

there are several different sequences of micro-operations that can occur.

Let us consider several hypothetical examples.

First, consider an add instruction:

ADD R1, X

which adds the contents of location X to register R1. The following

sequence of micro-operations might occur:

We begin with the IR containing the ADD instruction. In the first step,

the address portion of the IR is loaded into the MAR. Then the referenced

memory

location is read. Finally, the contents of RI and MBR are added by the

ALLT.

Again. This is a simplified example. Additional micro-operations may be

required to extract the register reference from the IR and perhaps to stage

the ALt inputs or outputs in some intermediate registers.

Let us look at two more complex examples. A common instruction is

increment and skip if zero:

The content of location X is incremented by l. If the result is 0, the next

instruction is skipped. A possible sequence of micro-operations is

ti: MAR <-- (IR(address)) t2: MBR- F- Memory

tz : MBR <-- (MBR) + 1

tu: Memory <- (MBR)

If ((MBR) = 0) then (PC F - (PC) + I)

The new feature introduced here is the conditional action. The PC is

incremented if (MBR) = 0. This test and action can be implemented as

31

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

one micro-operation. Note also that this micro-operation can be

performed during the same time unit during which the updated value in

MBR is stored back in memory.

It is worth pondering the minimal nature of the control unit. The control

unit is the engine that runs the entire computer. It does this based only on

knowing the instructions to be executed and the nature of the results of

arithmetic and logical operations (e.g., positive, overflow, etc.). It never

gets to see the data being processed or the actual results produced. It

controls everything with a few control signals to points within the

processor and a few control signals to the system bus.

Self-Assessment Exercises 1

Fill in the gaps in the sentences below with the most suitable words:

1. ________ are the functional, or atomic, operations of a processor.

2. The fetch cycle consists of ________ steps and ________ micro-

operations.

3. A ________ control unit uses fixed logic circuits while a ________

control unit stores control signals in memory.

INTERNAL PROCESSOR ORGANIZATION

Figure 8 indicates the use of a variety of data paths. The complexity of

this type of organization should be clear. Using an internal processor bus,

Figure 8 can be rearranged. A single internal bus connects the ALU and

all processor registers.

CPU with Internal Bus.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

32

Figure 8. CPU with internal bus

Gates and control signals are provided for the movement of data onto and

off the bus from each register. Additional control signals control data

transfer to and from the system (external) bus and the operation of the

ALU.

Two new registers, labeled Y and Z, have been added to the organization.

These are needed for the proper operation of the ALU. When an operation

involving two operands is performed, one can be obtained from the

internal bus, but the other must be obtained from another source. The AC

could be used for this purpose, but this limits the flexibility of the system

and would not work with a processor with multiple general-purpose

registers. Register Y provides temporary storage for the other input. The

ALU is a combinatorial circuit with no internal storage. Thus, when

control signals activate an ALU function, the input to the ALU is

transformed into the output. Thus, the output of the ALU cannot be

directly connected to the bus, because this output would feed back to the

input. Register Z provides temporary output storage. With this

arrangement, an operation to add a value from memory to the AC would

33

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

have the following steps:

t1: MAR <- (IR(address))

t2: MBR E- Memory

t3: Y <-(MBR)

t4: Z f- (AC) + (Y)

ts: AC F- (Z)

Other organizations are possible, but, in general, some sort of internal bus

or set of internal buses is used. The use of common data paths simplifies

the interconnection layout and the control of the processor. Another

practical reason for the use of an internal bus is to save space.

To illustrate some of the concepts introduced thus far in this chapter, let

us consider the Intel 8085. Its organization is shown in Figure 9. Several

key components that may not be self-explanatory are:

Incrementer/decrementer address latch: Logic that can add 1 to or

subtract 1 from the contents of the stack pointer or program counter. This

saves time by avoiding the use of the ALU for this purpose.

Interrupt control: This module handles multiple levels of interrupt

signals.

Serial I/O control: This module interfaces to devices that communicate

1 bit at a time. These signals are the interface between the 8085 processor

and the rest of the system (Figure 10).

 Figure 9. Intel 8085 CPU Block Diagram

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

34

The control unit is identified as having two components labeled (1) in;

decoder and machine cycle encoding and (2) in timing and control. The

timing of processor operations is synchronized by the clock trolled by the

control unit with control signals. Each instruction cycle i, into from one

to five machine cycles; each machine cycle is in turn diN from three to

five states. Each state lasts one clock cycle. During a state. The son

performs one or a set of simultaneous micro-operations as determined

control signals.

The number of machine cycles is fixed for a given instruction but one

instruction to another. Machine cycles are defined to be equivalent cesses.

Thus, the number of machine cycles for an instruction depends on

a bar of times the processor must communicate with external devices. For

e an instruction consists of two 8-bit portions, and then two machine,

cycles fetch the instruction. If that instruction involves a 1-byte memory

or 1/0 then a third machine cycle is required for execution.

Figure 10. Inter 8085 pin configuration

Figure 11 gives an example of 8085 timing, showing the value of external

control signals. Of course, at the same time, the control unit generates

35

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

internal control signals that control internal data transfers. The diagram

shows the instruction cycle for an OUT instruction. Three machine cycles

(Ml, M2, M3) are needed. During the first, the OUT instruction is fetched.

The second machine cycle fetches the second half of the instruction,

which contains the number of the 1/O device selected for output. During

the third cycle, the contents of the AC are written out to the selected

device over the data bus.

The Address Latch Enabled (ALE) pulse signals the start of each machine

cycle from the control unit. The ALE pulse alerts external circuits. During

timing state T1 of machine cycle Mr, the control unit sets the IO/M signal

to indicate that this is a memory operation. Also, the control unit causes

the contents of the PC to be placed on the

Figure 11. The timing diagram for inter 8085 out instruction

The timing diagram for inter 8085 out instruction addressed memory

module places the contents of the addressed memory vocation on the

address/data bus. The control unit sets the Read Control (RD) signal to

indicate a read, but it waits until T3 to copy the data from the bus. This

gives the memory module time to put the data on the bus and for the signal

levels to stabilize. The final state, T4, is a bus idle state during which the

processor decodes the instruction. The remaining machine cycles proceed

similarly.

Finally, consider a subroutine call instruction. As an example, consider a

branch and-save-address instruction:

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

36

BSA X

The address of the instruction that follows the BSA instruction is saved in

location X, and execution continues at location X + I. The saved address

will later be used for return. This is a straightforward technique for

providing subroutine calls. The following micro-operations suffice:

t,: MAR E- (IR(address)) MBR ~ (PC)

tz: PC <-- (IR(address)) Memory <-- MBR)

t3: PC <- (PC) + I

The address in the PC at the start of the instruction is the address of the

next instruction in sequence. This is saved at the address designated in the

IR. The later address is also incremented to provide the address of the

instruction for the next - instruction cycle.

We have seen that each phase of the instruction cycle can be decomposed

into a sequence of elementary micro-operations. In our example, there is

one sequence eac= for the fetch, indirect, and interrupt cycles, and, for the

execute cycle, there is one sequence of micro-operations for each opcode.

To complete the picture, we need to tie sequences of micro-operations

together, and this is done in Figure 15.3. We assume a new 2-bit register

called the instruction cycle code (ICC). The ICC designates the state of

the processor in terms of which portion of the cycle it is in:

00: Fetch 01: Indirect

10: Execute 11:

Interrupt

At the end of each of the four cycles, the ICC is set appropriately. The

indirect cycle is always followed by the execute cycle. The interrupt cycle

is always followed by the fetch cycle. For both the fetch and execute

cycles, the next cycle depends on the state of the system.

Of course, this is a simplified example. The flowchart for an actual

processor would be more complex. In any case, we have reached the point

in our discussion in which the operation of the processor is defined as the

performance of a sequence of micro-operations. We can now consider

how the control unit causes this sequence to occur of tbp r of the interrupt-

processing routine. These two actions may each be single micro-

operation. However, because most processors provide multiple tyr and/or

levels of interrupts, it may take one or more additional micro-operations

to obtain the Save Address and the Routine Address before they can be

transfer the events of any instruction cycle can be described as a sequence

of such micro operations. A simple example will be used. In the remainder

of this chapter, we then show how the concept of micro- operations serves

as a guide to the design of the control unit.

THE FETCH CYCLE

We begin by looking at the fetch cycle, which occurs at the beginning of

each instruction cycle and causes an instruction to be fetched from

memory. Four registers are involved:

• Memory address register (MAR): Is connected to the address

lines of the system bus. It specifies the address in memory for a read or

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

37

write operation.

• Memory buffer register (MBR): Is connected to the data lines of

the system bus. It contains the value to be stored in memory or the last

value read from memory.

• Program counter (PC): Holds the address of the next instruction

to be fetched.

• Instruction register (IR): Holds the last instruction fetched.

Let us look at the sequence of events for the fetch cycle from the point of

view of its effect on the processor registers. At the beginning of the fetch

cycle, the address of the next instruction to be executed is in the program

counter (PC); in this case, the address is 1100100. The first step is to move

that address to the memory address register (MAR) because this is the

only register connected to the address lines of the system bus. The second

step is to bring in the instruction. The desired address (in the MAR) is

placed on the bus, the control unit issues a READ command on the control

bus, and the result appears on the data bus and is copied into the memory

buffer register (MBR). We also need to increment the PC by the

instruction length to get ready for the next instruction. Because these two

actions (read word from memory, increment PC) do not interfere with

each other, we can do them simultaneously to save time. The third step is

to move the contents of the MBR to the instruction register (IR). This

frees up the MBR for use during a possible indirect cycle.

Thus, the simple fetch cycle consists of three steps and four micro-

operations. Each micro-operation involves the movement of data into or

out of a register. So long as these movements do not interfere with one

another, several of them can take place during one step, saving time.

Symbolically, we can write this sequence of events as follows:

where I is the instruction length. We need to make several comments

about this sequence. We assume that a clock is available for timing

purposes and that it emits regularly spaced clock pulses. Each clock pulse

defines a time unit. Thus, all time units are of equal duration. Each micro-

operation can be performed within the time of a single time unit. The

notation (t1, t2, t3) represents successive time units. In words, we have

First-time unit: Move contents of PC to MAR.

• Second-time unit: Move contents of the memory location

specified by MAR to MBR. Increment by I the contents of the PC.

• Third-time unit: Move contents of MBR to IR.

Note that the second and third micro-operations both take place during

the second time unit. The third micro-operation could have been grouped

with the fourth without affecting the fetch operation:

The groupings of micro-operations must follow two simple rules:

The proper sequence of events must be followed. Thus (MAR - (PC))

must precede (MBR - Memory) because the memory read operation

makes use of the address in the MAR. Conflicts must be avoided. One

should not attempt to read to and write from the same register in a one-

time unit, because the results would be unpredictable. For example, the

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

38

micro-operations (MBR Memory) and (IR E- MBR) should not occur

during the same time unit.

A final point worth noting is that one of the micro-operations involves an

addition. To avoid duplication of circuitry, this addition could be

performed by the ALU. The use of the ALU may involve additional

micro-operations, depending on the functionality of the ALU and the

organization of the processor.

Whereas micro-operations are ignored in that figure, this discussion

shows the micro-operations needed to perform the subcycles of the

instruction cycle.

Once an instruction is fetched, the next step is to fetch source operands.

Continuing our simple example, let us assume a one-address instruction

format, with direct and indirect addressing allowed. If the instruction

specifies an indirect address, then an indirect cycle must precede the

execute cycle.

The address field of the instruction is transferred to the MAR. This is then

used to fetch the address of the operand. Finally, the address field of the

IR is updated from the MBR, so that it now contains a direct rather than

an indirect address.

The IR is now in the same state as if indirect addressing had not been

used, and it is ready for the execute cycle. We skip that cycle for a

moment, to consider the interrupt cycle.

After the execute cycle, a test is made to determine whether any enabled

interrupts have occurred. If so, the interrupt cycle occurs. The nature of

this cycle varies greatly from one machine to another. We have

tl: MBR <-- (PC)

t2: MAR <-- Save Address PC <-- Routine ddress

t3: Memory <-- (MBR)

In the first step, the contents of the PC are transferred to the MBR, so that

they can be saved for return from the interrupt. Then the MAR is loaded

with the address at which the contents of the PC are to be saved, and the

PC is loaded with the address of the start of the interrupt-processing

routine. These two actions may each be a single micro-operation.

However, because most processors provide multiple types and/or levels

of interrupts, it may take one or more additional micro- operations to

obtain the Save Address and the Routine Address before they can be

transferred to the MAR and PC, respectively. In any case, once this is

done, the final step is to store the MBR, which contains the old value of

the PC, in memory. The processor is now ready to begin the next

instruction cycle.

The fetch, indirect, and interrupt cycles are simple and predictable. Each

involves a small, fixed sequence of micro-operations and, in each case,

the same micro-operations are repeated each time around.

This is not true of the execute cycle. Because of the variety of opcodes,

there are various sequences of micro-operations that can occur. Let us

consider several hypothetical examples.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

39

First, consider an add instruction:

which adds the contents of location X to register R1. The following

sequence of micro-operations might occur:

t1: MAR <-- (IR(address))

t2: MBR <-- Memory

t3: R1 ~- (R1) + (MBR)

We begin with the IR containing the ADD instruction. In the first step,

the address portion of the IR is loaded into the MAR. Then the referenced

memory location is read. Finally, the contents of R1 and MBR are added

by the ALU. Again, this is a simplified example. Additional micro-

operations may be required to extract the register reference from the IR

and perhaps to stage the ALU inputs or outputs in some intermediate

registers.

Let us look at two more complex examples. A common instruction is

increment and skip if zero:

The content of location X is incremented by 1. If the result is 0, the next

instruction is skipped. A possible sequence of micro-operations is

The new feature introduced here is the conditional action. The PC is

incremented if (MBR) = 0. This test and action can be implemented as

one micro-operation. Note also that this micro-operation can be

performed during the same time unit during which the updated value in

MBR is stored back in memory.

Finally, consider a subroutine call instruction. As an example, consider a

branch and-save-address instruction:

BSA X

The address of the instruction that follows the BSA instruction is saved in

location X, and execution continues at location X + I. The saved address

will later be used for return. This is a straightforward technique for

providing subroutine calls. The following micro-operations suffice:

t 1 : MAR <-- (IR(address)) MBR <-- (PC)

t z: PC ~ (IR(address)) Memory - (MBR)

t 3 : PC ~_ (PC) + I

The address in the PC at the start of the instruction is the address of the

next instruction in sequence. This is saved at the address designated in the

IR. The latter address is also incremented to provide the address of the

instruction for the next instruction cycle.

Self-Assessment Exercises 1

Fill in the gaps in the sentences below with the most suitable words:

1. ________ are the functional, or atomic, operations of a processor.

2. The fetch cycle consists of ________ steps and ________ micro-

operations.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

40

3. A ________ control unit uses fixed logic circuits while a ________

control unit stores control signals in memory.

THE INSTRUCTION CYCLE

We have seen that each phase of the instruction cycle can be decomposed

into a sequence of elementary micro-operations. In our example, there is

one sequence each for the fetch, indirect, and interrupt cycles, and, for the

execute cycle, there is one sequence of micro-operations for each opcode.

We assume a new 2-bit register called the instruction cycle code (ICC).

The ICC designates the state of the processor in terms of which portion

of the cycle it is in:

00: Fetch

01: Indirect

10: Execute

11: Interrupt

At the end of each of the four cycles, the ICC is set appropriately. The

indirect cycle is always followed by the execute cycle. The interrupt cycle

is always followed by the fetch cycle. For both the fetch and execute

cycles, the next cycle depends on the state of the system.

Of course, this is a simplified example. The flowchart for an actual

processor would be more complex. In any case, we have reached the point

in our discussion in which the operation of the processor is defined as the

performance of a sequence of micro-operations. We can now consider

how the control unit causes this sequence to occur.

3.2 CONTROL OF THE PROCESSOR

As a result of our analysis in the preceding section, we have decomposed

the behavior or functioning of the processor into elementary operations,

called micro-operations. By reducing the operation of the processor to its

most fundamental level, we can define exactly what it is that the control

unit must cause to happen. Thus, we can define the functional

requirements for the control unit: those functions that the control unit

must perform. A definition of these functional requirements is the basis

for the design and implementation of the control unit.

With the information at hand, the following three-step process leads to a

characterization of the control unit:

1. Define the basic elements of the processor.

2. Describe the micro-operations that the processor performs.

3. Determine the functions that the control unit must perform

to cause the micro-operations to be performed.

We have already performed steps 1 and 2. Let us summarize the results.

First, the basic functional elements of the processor are the following:

• ALU

• Registers

• Internal data paths External data paths

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

41

• Control unit

Some thought should convince you that this is i complete list. The ALU

is the functional essence of the computer. Registers are used to store data

internally on the processor. Some registers contain status information

needed to manage instruction sequencing (e.g., a program status word).

Others contain data that go to or comes from the ALU, memory, and I/O

modules. Internal data paths are used to move data between registers and

between registers and ALU. External data paths link registers to memory

and 1/O modules, often utilizing a system bus. The control unit causes

operations to happen within the processor.

The execution of a program consists of operations involving these

processor elements. As we have seen, these operations consist of a

sequence of micro-operations. micro- operations fall into one of the

following categories:

Transfer data from one register to another.

Transfer data from a register to an external interface (e.g., system bus).

Transfer data from an external interface to a register.

Perform an arithmetic or logic operation, using registers for input and

output.

All of the micro-operations needed to perform one instruction cycle,

including all of the micro-operations to execute every instruction in the

instruction set, fall into one of these categories.

We can now be somewhat more explicit about how the control unit

functions. The control unit performs two basic tasks:

➢ Sequencing: The control unit causes the processor to step through

a series of micro-operations in the proper sequence, based on the program

being executed.

➢ Execution: The control unit causes each micro-operation to be

performed.

The preceding is a functional description of what the control unit does.

The key to how the control unit operates is the use of control signals.

Controls Signals

We have defined the elements that make up the processor (ALU, registers,

data paths) and the micro-operations that are performed. For the control

unit to perform its function, it must have inputs that allow it to determine

the state of the system and outputs that allow it to control the behavior of

the system. These are the external specifications of the control unit.

Internally, the control unit must have the logic required to perform its

sequencing and execution functions. The remainder of this section is

concerned with the interaction between the control unit and the other

elements of the processor.

The inputs are

✓ Clock: This is how the control unit "keeps time." The control unit

causes one micro-operation (or a set of simultaneous micro-operations) to

be performed for each clock pulse. This is sometimes referred to as the

processor cycle time, or the clock cycle time.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

42

✓ Instruction registers: The opcode and addressing mode of the

current instruction are used to determine which micro-operations to

perform during the execute cycle.

✓ Flags: These are needed by the control unit to determine the status

of the processor and the outcome of previous ALU operations. For

example, for the increment-and-skip-if-zero (ISZ) instruction, the control

unit will increase the PC if the zero flag is set.

Control signals from the control bus: The control bus portion of the

system bus provides signals to the control unit.

The outputs are as follows:

✓ Control signals within the processor: There are two types: those

that cause data to be moved from one register to another, and those that

activate specific ALU functions.

- Control signals to control bus: These are also of two types: control

signals to memory, and control signals to the I/O modules.

Three types of control signals are used: those that activate an ALU

function, those that activate a data path, and those that are signals on the

external system bus or other external interface. All of these signals are

ultimately applied directly as binary inputs to individual logic gates.

Let us consider again the fetch cycle to see how the control unit maintains

control. The control unit keeps track of where it is in the instruction cycle.

At a given point, it knows that the fetch cycle is to be performed next. The

first step is to transfer the contents of the PC to the MAR. The control unit

does this by activating the control signal that opens the gates between the

bits of the PC and the bits of the MAR. The next step is to read a word

from memory into the MBR and increment the PC. The control unit does

this by sending the following control signals simultaneously:

A control signal that opens gates, allowing the contents of the MAR onto

the address bus A memory read control signal on the control bus

A control signal opens the gates, allowing the contents of the data bus to

be stored in the MBR

Control signals to logic that add 1 to the contents of the PC and store the

result back to the PC.

Following this, the control unit sends a control signal that opens gates

between the MBR and the IR.

This completes the fetch cycle except for one thing: The control unit must

decide whether to perform an indirect cycle or an execute cycle next. To

decide this, it examines the IR to see if an indirect memory reference is

made.

The indirect and interrupt cycles work similarly. For the execute cycle,

the control unit begins by examining the opcode and based on that,

decides which sequence of micro-operations to perform for the execute

cycle.

To illustrate the functioning of the control unit, let us examine a simple

example. Figure

12 illustrates the example. This is a simple processor with a single

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

43

accumulator

Figure 12. Data paths and control signals

(AC). The data paths between elements are indicated. The control paths

for signals emanating from the control unit are not shown, but the

terminations of control signals are labeled Ci and indicated by a circle.

The control unit receives inputs from the clock, the instruction registers,

and flags. With each dock cycle, the control unit reads all of its inputs and

emits a set of control signals. Control signals go to three separate

destinations:

Data paths: The control unit controls the internal flow of data. For

example, on instruction fetch, the contents of the memory buffer register

are transferred to the instruction register. For each path to be controlled,

there is a switch (indicated by a circle in the figure). A control signal from

the control unit temporarily opens the gate to let data pass.

ALU: The control unit controls the operation of the ALU by a set of

control signals. These signals activate various logic circuits and gates

within the ALU.

System bus: The control unit sends control signals out onto the control

lines of the system bus (e.g., memory READ).

The control unit must maintain knowledge of where it is in the instruction

cycle. Using this knowledge, and by reading all of its inputs, the control

unit emits a sequence of control signals that cause micro-operations to

occur. It uses the clock pulses to time the sequence of events, allowing

time between events for signal levels to stabilize. For simplicity, the data

and control paths for incrementing the PC and for loading the fixed

addresses into the PC and MAR are not shown.

t is worth pondering the minimal nature of the control unit. The control

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

44

unit is the engine that runs the entire computer. It does this based only on

knowing the instructions to be executed and the nature of the results of

arithmetic and logical operations (e.g., positive, overflow, etc.). It never

gets to specify the data being processed or the actual results produced. It

controls everything with a few control signals to points within the

processor and a few control signals to the system bus.

Figure 12 indicates the use of a variety of data paths. The complexity of

this type of organization should be clear. Gates and control signals are

provided for the movement of data onto and off the bus from each register.

Additional control signals control data transfer to and from the system

(external) bus and the operation of the ALU.

Two new registers, labeled Y and Z, have been added to the organization.

These are needed for the proper operation of the ALU. When an operation

involving two operands is performed, one can be obtained from the

internal bus, but the other must be obtained from another source. The AC

could be used for this purpose, but this limits the flexibility of the system

and would not work with a processor with multiple general-purpose

registers. Register Y provides temporary storage for the other input. The

ALU is a combinatorial circuit with no internal storage. Thus, when

control signals activate an ALU function, the input to the ALU is

transformed into the output. Thus, the output of the ALU cannot be

directly connected to the bus, because this

the output would feed back to the input. Register Z provides temporary

output storage. With this arrangement, an operation to add a value from

memory to the AC would have the following steps:

t1: MAR (IR (address))

t2: MBR Memory

t3: Y (MBR)

t4: Z (AC) + (Y)

t5: AC (Z)

Other organizations are possible, but, in general, some sort of internal bus

or set of internal buses is used. The use of common data paths simplifies

the interconnection layout and the control of the processor. Another

practical reason for the use of an internal bus is to save space.

To illustrate some of the concepts introduced thus far in this unit, let us

consider the Intel 8085. Its organization is shown in Figure 11. Several

key components that may not be self-explanatory are:

❖ Incremental decrementer address latch: Logic that can add 1 to

or subtract 1 from the contents of the stack pointer or program counter.

This saves time by avoiding the use of the ALU for this purpose.

❖ Interrupt control: This module handles multiple levels of

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

45

interruption signals.

❖ Serial UO control: This module interfaces to devices that

communicate 1 bit at a time.

Table 15.2 describes the external signals into and out of the 8085. These

are linked to the external system bus. These signals are the interface

between the 8085 processor and the rest of the system (Figure 12).

The control unit is identified as having two components labeled (1)

instruction decoder and machine cycle encoding and (2) timing and

control. A discussion of the first component is deferred until the next

section. The essence of the control unit is the timing and control module.

This module includes a clock and accepts as inputs the current instruction

and some external control signals. Its output consists of control signals to

the other components of the processor plus control signals to the external

system bus.

The timing of processor operations is synchronized by the clock and

controlled by the control unit with control signals. Each instruction cycle

is divided into one to five machine cycles; each machine cycle is in turn

divided into three to five states. Each state lasts one clock cycle. During

a state, the processor performs one or a set of simultaneous micro-

operations as determined by the control signals.

The number of machine cycles is fixed for a given instruction but varies

from one instruction to accesses. Thus, the number of machine cycles for

an instruction depends on t- lie number of times the processor must

communicate with external devices. For example, if an instruction

consists of two 8-bit portions, then two machine cycles are required to

fetch the instruction. If that instruction involves a 1-byte memory or I/O

operation, then a third machine cycle is required for execution.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

46

Figure 14. Intel 8085 External Control

Figure 14 gives an example of 8085 timing, showing the value of external

control signals. Of course, at the same time, the control unit generates

internal control signals that control internal data transfers. The diagram

shows the instruction cycle for an OUT instruction. Three machine cycles

(M1, MZ, M3) are needed. During the first, the OUT instruction is fetched.

The second machine cycle fetches the second half of the instruction,

which contains the number of the I/O device selected for output. During

the third cycle, the contents of the AC are written out to the selected

device over the data bus.

Pulse signals the start of each machine cycle from the control unit. The

ALE pulse alerts external circuits. During timing state Tl of machine cycle

Ml, the control unit sets the IO/M signal to indicate that this is a memory

operation. Also, the control unit causes the contents of the PC to be placed

on the address bus (Als through As) and the address/data bus (ADS through

ADO). With the falling edge of the ALE pulse, the other modules on the

bus store the address. During timing state T2, the addressed memory mole

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

47

places the contents of the addressed memory location on the address/data

bus. The control unit sets the Read Control (RD) signal to indicate a read,

but it waits until T3 to copy the data from the bus. This gives the memory

module time to put the data on the bus and for the signal levels to stabilize.

The final state, T4, is a bus idle state during which the processor decodes

the instruction. The remaining machine cycles proceed similarly.

3.3 HARDWIRED CONTROL/ IMPLEMENTATION

In a hardwired implementation, the control unit is essentially a state

machine circuit. Its input logic signals are transformed into a set of output

logic signals, which are the control signals.

3.3.1 CONTROL UNIT INPUT

The key inputs are the instruction registers, the clock, flags, and control

bus signals. In the case of the flags and control bus signals, each bit

typically has some meaning (eg overflow). The other two inputs,

however, are not directly useful to the control unit. First, consider the

instruction register. The control unit makes use of the opcode and will

perform different actions (issue a different combination of control signals)

for different instructions. To simplify the control unit logic, there should

be a unique logic input for each opcode. This function can be performed

by a decoder, which takes an encoded input and produces a single output.

The clock portion of the control unit issues a representative sequence of

pulses. This is useful for measuring the duration of micro-operations.

Essentially the period of the clock pulses must be long enough to allow

the propagation of signals along data paths and through processor

circuitry. However, the control unit emits different control signals at

different time units within the same instruction cycle. Thus, we would like

a counter as input to the control unit with a different control signal being

used for T1, T2, and so forth. At the end of an instruction cycle, the

control unit must feed back to the counter to reinitialize it at T1.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

48

Figure 14. The control unit refirements

With these two refinements, the control unit can be depicted as in Figure

14.

To define the hardwired implementation of a control unit, all that remains

is to discuss the internal logic of the control unit that produces output

control signals as a function of its input signals.

Essentially, what must be done is, for each control signal, to derive a

Boolean expression of that signal as a function of the inputs. This is best

explained by example. Let us consider again our simple example

illustrated in Figure 15.5. We saw in Table

15.1 the micro-operation sequences and control signals needed to control

three of the four phases of the instruction cycle.

Let us consider a single control signal, C5. This signal causes data to be

read from the external data bus into the MBR. Let us define two new

control signals, P and Q, that have the following interpretation:

PQ = 00 Fetch Cycle PQ = Ol Indirect Cycle PQ = 10

 Execute Cycle PQ = 11 Interrupt Cycle

Then the following Boolean expression defines C5:

C5 = P.Q.T2 + P.Q.T2

That is, the control signal C5 will be asserted during the second time unit

of both the fetch and indirect cycles.

This expression is not complete. C5 is also needed during the execute

cycle. For our simple example, let us assume that there are only three

instructions that read from memory: LDA, ADD, and AND. Now we can

define C5 as

C5 + P . Q . TZ + P - Q - (LDA + ADD + AND)-T2

This same process could be repeated for every control signal generated by

the processor. The result would be a set of Boolean equations that define

the behavior of the control unit and hence of the processor.

To tie everything together, the control unit must control the state of the

instruction cycle. As was mentioned, at the end of each sub-cycle (fetch,

indirect, execute, interrupt), the control unit issues a signal that causes the

timing generator to reinitialize and issue Tl. The control unit must also set

the appropriate values of P and Q to define the next sub-cycle to be

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

49

performed.

The reader should be able to appreciate that in a modern complex

processor, the number of Boolean equations needed to define the control

unit is very large. The task of implementing a combinatorial circuit that

satisfies all of these equations becomes extremely difficult. The result is

that a far simpler approach, known as microprogramming, is usually used.

3.4 MICRO PROGRAMMED CONTROL

An alternative to a hardwired control unit is a microprogrammed control

unit in which the logic of the control unit is specified by a microprogram.

A micro program consists of a sequence of instructions in a

microprogramming language. These are very simple instructions that

specify micro-operations.

3.4.1 MICRO INSTRUCTIONS

Implement a control unit as n interconnection of basic logic elements is

no easy task. The design must include logic for sequencing through

micro-operations for executing micro-operations, interpreting opcodes,

and for making decisions based on ALU flags. An alternative, which has

been used in many CISC processors, is to implement a microprogrammed

control unit.

In addition to the use of control signals, each micro-operation is described

in symbolic notation. This notation looks suspiciously like a

programming language. It is a language, known as a microprogramming

language. Each line describes a set of micro-operations occurring at one

time and is known as a microinstruction. A sequence of instructions is

known as a microprogram or firmware. This latter term reflects the fact

that a microprogram is midway between hardware and software. It is

easier to design in firmware than hardware, but it is more difficult to

write a firmware program than a software program.

How can we use the concept of microprogramming to implement a contra:

unit? Consider that for each micro-operation, all that the control unit is

allowed t o do is generate a set of control signals. Thus, for any micro-

operation, each control link: emanating from the control unit is either on

or off. This condition can, of course, be represented by a binary digit for

each control line. So we could construct a contra word in which each bit

represents one control line. Then each micro-operation would be

represented by a different pattern of 1s and Os in the control word.

Suppose we string together a sequence of control words to represent the

sequence of micro-operations performed by the control unit. Next, we

must recognize that the sequence of micro-operations is not fixed.

Sometimes we have an indirect cycle; sometimes we do not. So let us put

our control words in a memory, with each word having a unique address.

Now add an address field to each control word, indicating the location of

the next control word to be executed if a certain condition is true (e.g., the

indirect bit in a memory-reference instruction is 1). Also, add a few bits

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

50

to specify the condition.

The result is known as a horizontal microinstruction. The format of the

microinstruction or control word is as follows. There is one bit for each

internal processor control line and one bit for each system bus control line

There is a condition field indicating the condition under which there

should be a’ branch, and there is a field with the address of the

microinstruction to be executed next when a branch is taken. Such a

microinstruction is interpreted as follows:

• To execute this microinstruction, turn on all the control lines

indicated by a 1 bit; leave off all control lines indicated by a 0 bit. The

resulting control signals will cause one or more micro-operations to be

performed.

• If the condition indicated by the condition bits is false,

execute the next microin- struction in sequence.

• If the condition indicated by the condition bits is true, the next

microinstruction to be executed is indicated in the address field.

Figure 3.4.1b shows how these control words or microinstructions could

be arranged in a control memory. The microinstructions in each routine

are to be executed sequentially. Each routine ends with a branch or jump

instruction indicating where to go next. There is a special execute cycle

routine whose only purpose is to signify that one of the machine

instruction routines (AND, ADD, and so on) is to be executed next,

depending on the current opcode.

The control memory is a concise description of the complete operation of

the control unit. It defines the sequence of micro-operations to be

performed during each cycle (fetch, indirect, execute, interrupt), and it

specifies the sequencing of these cycles. If nothing else, this notation

would be a useful device for documenting the functioning of a control unit

for a particular computer. But it is more than that. It is also a way of

implementing the control unit.

The control memory contains a program that describes the behavior of the

control unit. It follows that we could implement the control unit by simply

executing that program. The set of micro instructions is stored in the

control memory. The control address register contains the address of the

next microinstruction to be read. When a microinstruction is read from

the control memory, it is transferred to a control buffer register the left-

hand portion of that register connects to the control lines emanating from

the control unit. Thus, reading a microinstruction from the control

memory is the same as executing that microinstruction. The third element

shown in the figure is a sequencing unit that loads the control address

register and issues a read command.

The control unit functions as follows:

1. To execute an instruction, the sequencing logic unit issues a READ

command to the control memory.

2. The word whose address is Specified in the control address

register is read into the control buffer register.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

51

3. The content of the control buffer register generates control

signals and next address information for the sequencing logic unit.

4. The sequencing logic unit loads a new address into the control

address register based on the next-address information from the control

buffer register and the ALU flags.

All this happens during one clock pulse.

The last step just listed needs elaboration. After each microin- struction,

the sequencing logic unit loads a new address into the control address

register. Depending on the value of the ALU flags and the control buffer

register, one of three decisions is made:

Depending on the value of the ALU flags and the control buffer register,

one of three decisions is made:

• Get the next instruction: Add 1 to the control address register.

• Jump to a new routine based on a jump microinstruction: Load the

address field of the control buffer register into the control address register.

• Jump to a machine instruction routine: Load the control address

register based on the opcode in the IR.

3.4.2 ADVANTAGES AND DISADVANTAGES

The principal advantage of the use of micro-programming to implement

a control unit is that it simplifies the design of the control unit. Thus it is

both cheaper and less error-prone to implement. A hard-wired control unit

must contain complex logic for sequencing through the many micro-

operation s of the instructions cycle. On the other hand the decoders and

sequencing logic unit of a microprogrammed control unit are very simple

pieces of logic.

The principal disadvantage of a micro programmed unit is that it will be

somewhat slower than a hardwired unit of comparable technology.

Despite this, microprogramming is the dominant technique for

implementing control units in pure CISC architecture due to its ease of

implementation. RISC processors with their simpler instruction format,

typically use hardwired control units

The two basic tasks performed by a microprogrammed control unit are as

follows:

- Micro instruction sequencing: Get the next control signals needed

to execute the micro instruction. In designing a control unit, these tasks

must be considered together because both affect the format of the micro-

instruction and the timing of the control unit.

Self-Assessment Exercises 2

Answer the following questions by choosing the most suitable option:

1. What is the main advantage of microprogrammed control units?

 A. They are faster than hardwired units

 B. They are easier to design and modify

 C. They use less power

 D. They are more reliable

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

52

2. Which type of processors typically use hardwired control units?

 A. CISC processors

 B. RISC processors

 C. Both CISC and RISC

 D. Neither CISC nor RISC

4.0 CONCLUSION

Micro- operations are the functional or atomic operations of a processor.

The concepts of micro- operation serve as a guide to the design of the

control unit.

5.0 SUMMARY

Each instruction cycle is made up of a set of micro-operations that

generate control signals. Execution is accomplished by the effect of these

control signals, emanating from the control unit to the ALU registers and

system interconnection structure. Finally, an approach to the

implementation of the control unit referred to as hard-wired

implementation is presented. Furthermore, the concept of micro-

operations leads to an elegant and powerful approach to control unit

implementation, known as micro programming. Besides each instruction

in the machine language of the processor is translated into a sequence of

lower-level control unit instructions referred to as micro-instructions and

the process of translation is referred to as microprogramming.

6.0 TUTOR- MARKED ASSIGNMENT

1. What is the relationship between instructions and micro

operations?

2. Briefly what is meant by a hard-wired implementation of a control

unit?

3. What are the basic tasks performed by a micro programmed

control unit?

4. What is the difference between a hard-wired implementation and

a micro-programmed implementation of a control unit?

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1. Micro-operations

2. Three, four

3. Hardwired, microprogrammed

Self-Assessment Exercise 2

1. B

2. B

7.0 REFERENCES/FURTHER READING

Carter J. Microprocessor Architecture and Microprogramming – Upper

saddle River N. J Prentice HALL, 1996

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

53

Heath, S. (2014). Microprocessor Architectures: RISC, CISC and DSP.

Elsevier.

Rafiquzzaman, M. (2005). Fundamentals of digital logic and

microcomputer design. John Wiley & Sons.

Rafiquzzaman, M. (2021). Microprocessors and microcomputer-based

system design. CRC press.

Chakraborty, P. (2020). Computer Organisation and Architecture:

Evolutionary Concepts, Principles, and Designs. Chapman and

Hall/CRC.

Null, L. (2023). Essentials of Computer Organization and Architecture.

Jones & Bartlett Learning.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

54

MODULE 3 CPU ORGANIZATION

UNIT 1: CPU Organization

UNIT 2: The Arithmetic and Logic Unit

UNIT 3: Control Unit

UNIT 1 CPU ORGANIZATION

1.0 Introduction

2.0 Objectives

3.0 Main content

3.1 History of CPU

3.2 How the CPU work

4.0 Conclusion

5.0 Summary

6.0 Tutor marked assignment

7.0 References/further reading

1.0 INTRODUCTION

The full form of the CPU is the Central Processing Unit. It is the brain of

the computer. All types of data processing operations and all important

functions of a computer are performed by the CPU. It helps input and

output devices communicate with each other and perform their respective

operations. It also stores data that are input, intermediate results in

between processing, and instructions. In this unit, we introduce the basic

CPU organization and its instructions. This module also shows how a

CPU is made, what’s inside a CPU, how computer memory works, and

how a CPU works.

A Central Processing Unit is the most important component of a computer

system. A CPU is hardware that performs data input/output, processing

and storage functions for a computer system. A CPU can be installed into

a CPU socket. These sockets are generally located on the motherboard.

CPU can perform various data processing operations. CPU can store data,

instructions, programs, and intermediate results.

2.0 OBJECTIVES

At the end of the unit, you should be able to

• Recognize the history of Intel microprocessors

• Recall how a CPU is made from sand to chip

• List what’s inside a CPU

• Demonstrate knowledge of computer memory integrating with a

CPU

3.1 History of CPU

Since 1823, when Baron Jons Jakob Berzelius discovered silicon, which

is still the primary component used in the manufacture of CPUs today, the

history of the CPU has experienced numerous significant turning points.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

55

The first transistor was created by John Bardeen, Walter Brattain, and

William Shockley in December 1947. in 1958, the first working

integrated circuit was built by Robert Noyce and Jack Kilby.

The Intel 4004 was the company’s first microprocessor, which it unveiled

in 1971. Ted Hoff’s assistance was needed for this. When Intel released

its 8008 CPU in 1972, Intel 8086 in 1976, and Intel 8088 in June 1979, it

contributed to yet another win. The Motorola 68000, a 16/32-bit

processor, was also released in 1979. The Sun also unveiled the SPARC

CPU in 1987. AMD unveiled the AM386 CPU series in March 1991.

In January 1999, Intel introduced the Celeron 366 MHZ and 400 MHz

processors. AMD back in April 2005 with its first dual-core processor.

Intel also introduced the Core 2 Dual processor in 2006. Intel released the

first Core i5 desktop processor with four cores in September 2009.

In January 2010, Intel released other processors like the Core 2 Quad

processor Q9500, the first Core i3 and i5 mobile processors, first Core i3

and i5 desktop processors.

In June 2017, Intel released the Core i9 desktop processor, and Intel

introduced its first Core i9 mobile processor In April 2018.

Different Parts of CPU

Now, the CPU consists of 3 major units, which are:

• Memory or Storage Unit

• Control Unit

• ALU (Arithmetic Logic Unit)

Let us now look at the block diagram of the computer:

Here, in this diagram, the three major components are also shown. So, let

us discuss these major components:

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

56

Memory or Storage Unit

As the name suggests this unit can store instructions, data, and

intermediate results. The memory unit is responsible for transferring

information to other units of the computer when needed. It is also known

as an internal storage unit or the main memory or the primary storage

or Random Access Memory (RAM) as all these are storage devices.

Its size affects speed, power, and performance. There are two types of

memory in the computer, which are primary memory and secondary

memory. Some main functions of memory units are listed below:

Data and instructions are stored in memory units which are required for

processing.

It also stores the intermediate results of any calculation or task when they

are in process.

The final results of processing are stored in the memory units before these

results are released to an output device for giving the output to the user.

All sorts of inputs and outputs are transmitted through the memory unit.

Control Unit

As the name suggests, a control unit controls the operations of all parts of

the computer but it does not carry out any data processing operations.

Executing already stored instructions, It instructs the computer by using

the electrical signals to instruct the computer system. It takes instructions

from the memory unit and then decodes the instructions after that it

executes those instructions. So, it controls the functioning of the

computer. Its main task is to maintain the flow of information across the

processor. Some main functions of the control unit are listed below:

Controlling of data and transfer of data and instructions is done by the

control unit among other parts of the computer.

The control unit is responsible for managing all the units of the computer.

The main task of the control unit is to obtain the instructions or data that

is input from the memory unit, interpret them, and then direct the

operation of the computer according to that.

The control unit is responsible for communication with Input and output

devices for the transfer of data or results from memory.

The control unit is not responsible for the processing of data or storing

data.

ALU (Arithmetic Logic Unit)

ALU (Arithmetic Logic Unit) is responsible for performing arithmetic

and logical functions or operations. It consists of two subsections, which

are:

Arithmetic Section

Logic Section

Now, let us know about these subsections:

Arithmetic Section: By arithmetic operations, we mean operations like

addition, subtraction, multiplication, and division, and all these operation

and functions are performed by ALU. Also, all the complex operations

are done by making repetitive use of the mentioned operations by ALU.

https://www.geeksforgeeks.org/random-access-memory-ram/

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

57

Logic Section: By Logical operations, we mean operations or functions

like selecting, comparing, matching, and merging the data, and all these

are performed by ALU.

Note: CPU may contain more than one ALU and it can be used for

maintaining timers that help run the computer system.

What Does a CPU Do?

The main function of a computer processor is to execute instruction and

produce an output. CPU work are Fetch, Decode and Execute are the

fundamental functions of the computer.

Fetch: the first CPU gets the instruction. That means binary numbers that

are passed from RAM to CPU.

Decode: When the instruction is entered into the CPU, it needs to decode

the instructions. with the help of ALU(Arithmetic Logic Unit) the process

of decode begins.

Execute: After decode step the instructions are ready to execute

Store: After execute step the instructions are ready to store in the

memory.

Types of CPU

We have three different types of CPU:

Single Core CPU: The oldest type of computer CPUs is single core CPU.

These CPUs were used in the 1970s. these CPUs only have a single core

that preform different operations. This means that the single core CPU

can only process one operation at a single time. single core CPU is not

suitable for multitasking.

Dual-Core CPU: Dual-Core CPUs contain a single Integrated Circuit

with two cores. Each core has its cache and controller. These controllers

and cache are work as a single unit. dual core CPUs can work faster than

the single-core processors.

Quad-Core CPU: Quad-Core CPUs contain two dual-core processors

present within a single integrated circuit (IC) or chip. A quad-core

processor contains a chip with four independent cores. These cores read

and execute various instructions provided by the CPU. Quad Core CPU

increases the overall speed for programs. Without even boosting the

overall clock speed it results in higher performance.

Self-Assessment Exercises 1

 Answer the following questions by choosing the most suitable

option:

1. What are the three major components of a CPU?

 A. Input, Output, Storage

 B. Memory Unit, Control Unit, ALU

 C. Hardware, Software, Firmware

 D. Registers, Cache, Bus

2. Which CPU type has multiple independent cores?

 A. Single Core CPU

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

58

 B. Dual-Core CPU

 C. Quad-Core CPU

 D. Both B and C

3. What does the CPU do during the "Fetch" step?

 A. Executes the instruction

 B. Stores the result

 C. Gets the instruction from memory

 D. Decodes the instruction

3.2 How the CPU work

Inside every computer is a central processing unit and inside every CPU

are small components that carry out all the instructions for every program

you run. These components include AND gates, OR gates, NOT gates,

Clock, Multiplexer, ALU (arithmetic logic unit), etc. Data bus performs

data transfer within a CPU and a computer. As shown in Fig. 8-1, the CPU

is organized with a Program Counter (PC), Instruction Register (IR),

Instruction Decoder, Control Unit, Arithmetic Logic Unit (ALU),

Registers, and Buses. PC holds the address of the next instruction to be

fetched from Memory. IR holds each instruction after it is fetched from

Memory. Instruction Decoder decodes and interprets the contents of the

IR, and splits a whole instruction into fields for the Control Unit to

interpret. The Control Unit coordinates all activities within the CPU, has

connections to all parts of the CPU, and includes a sophisticated timing

circuit. ALU carries out arithmetic and logical operations, exemplified by

addition, comparison, and Boolean AND/OR/NOT operations. Within

ALU, input registers hold the input operands and output register holds the

result of an ALU operation. Once completing ALU operation, the result

is copied from the ALU output register to its final destination.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

59

Figure 15. The CPU Organization

General-purpose registers are available for the programmer to use in their

programs within the CPU. Typically, the programmer tries to maximize

the use of these registers to speed program execution. Busses serve as

communication highways for passing information on the computer.

The computer has memory which similarly memorizes data we remember

past events. The register is the fastest memory which is located within the

CPU of the computer.

Figure 16. The CPU Overview

Figure 16 shows the CPU overview which consists of PC, instruction

memory, registers, ALU, and Data memory. PC always holds the address

of the next instruction to be fetched from Memory. Instruction, e.g. add

$t1, $t2, $t3, is fetched into instruction memory. Register operands are

used by an instruction in registers, where $t1 is the first source operand,

$t2 is the second source operand, and $t3 is the storage of the result. ALU

executes an arithmetic operation, e.g. Sum of $t1 and $t2. The result from

the ALU or memory is written back into the register file ($t3). In the

figure, ALU results and the output of data memory can’t just join wires

together. The red dash-dot line can be designed with the multiplexer to

put the wires together.

The following figure shows CPU control with multiplexers. The first

multiplexer controls what value replaces the PC (PC + 4 or the branch

destination address), where the Mux is controlled by the AND gate with

the Zero output of ALU and a control signal. The second multiplexer

steers the output of the ALU or the output of the data memory. The third

one determines whether the second ALU input is from the registers or

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

60

from the offset field of the instruction (for a load or store).

4.0 CONCLUSION

The Central Processing Unit (CPU) is often referred to as the brain of the

computer. It executes instructions from computer programs by

performing basic arithmetic, logical, control, and input/output (I/O)

operations specified by the instructions. The CPU has a critical role in

determining the speed and capability of a computer system.

5.0 SUMMARY

The Central Processing Unit (CPU) is the primary component of a

computer responsible for interpreting and executing instructions. Often

referred to as the computer's brain, it consists of the Arithmetic Logic Unit

(ALU), which performs calculations and logical operations, and the

Control Unit (CU), which directs all operations. The CPU fetches

instructions from memory, decodes them, executes them, and writes back

the results. Its performance is influenced by factors such as clock speed,

number of cores, and cache size. Modern CPUs are designed for a range

of devices, from high-performance servers to power-efficient mobile

devices, continually advancing in power efficiency, integration, and

parallel processing capabilities.

6.0 TUTOR- MARKED ASSIGNMENT

1. List and briefly explain parts of the CPU.

2. List the two most common types of control unit

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1. B

2. D

3. C

7.0 REFERENCES/FURTHER READING

Catanzaro B. Multiprocessor system Architecture Mountain View CA,

Sun sift pres 1994

Null, L. (2023). Essentials of Computer Organization and Architecture.

Jones & Bartlett Learning.

Liu, Z., Lin, Y., & Sun, M. (2023). Representation learning for natural

language processing (p. 521). Springer Nature.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

61

UNIT 2 THE ARITHMETIC AND LOGIC UNIT

1.0 Introduction

2.0 Objectives

3.0 Main content

3.1 The General Concepts of CPU

3.2 Configurations of the ALU

3.3 Operations Performed by ALU

4.0 Conclusion

5.0 Summary

6.0 Tutor marked assignment

7.0 References/further

1.0 Introduction

The Arithmetic Logic Unit (ALU) is a fundamental component of the

Central Processing Unit (CPU) that is responsible for executing all

arithmetic and logical operations within a computer. It performs essential

arithmetic operations such as addition, subtraction, multiplication, and

division, as well as logical operations including AND, OR, NOT, and

XOR. Additionally, the ALU handles bitwise operations, which involve

the manipulation of individual bits within a binary number. These

operations are critical for various computational tasks, such as

calculations, data manipulation, and decision-making processes. The

ALU consists of input registers that store the operands, operational logic

that performs the calculations, and result storage that temporarily holds

the output before it is transferred to other CPU components or memory.

Beyond basic calculations, the ALU plays a crucial role in comparison

operations, such as determining whether numbers are equal, greater than,

or less than each other. This capability is essential for implementing

control flow in programs, enabling the CPU to make decisions based on

conditional statements and execute different instructions based on those

conditions. The efficiency and speed of the ALU directly impact the

overall performance of the CPU, as it processes the core computations

required for running applications and executing instructions. By

facilitating both arithmetic and logical operations, the ALU enables the

CPU to perform complex tasks and drive the functionality of the

computer.

2.0 Objectives

At the end of this unit, you should be able to

- Understand the general concepts of the Arithmetic and Logic Unit

- Explain the ALU of the computer system.

3.1 The General Concepts of CPU

In the computer system, ALU is a main component of the central

processing unit, which stands for arithmetic logic unit and performs

arithmetic and logic operations. It is also known as an integer unit (IU)

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

62

which is an integrated circuit within a CPU or GPU, which is the last

component to perform calculations in the processor. It can perform all

processes related to arithmetic and logic operations such as addition,

subtraction, and shifting operations, including Boolean comparisons

(XOR, OR, AND, and NOT operations). Also, binary numbers can

accomplish mathematical and bitwise operations. The arithmetic logic

unit is split into AU (arithmetic unit) and LU (logic unit). The operands

and code used by the ALU tell it which operations have to be performed

according to input data. When the ALU completes the processing of input,

the information is sent to the computer's memory.

Except for performing calculations related to addition and subtraction,

ALUs handle the multiplication of two integers as they are designed to

execute integer calculations; hence, its result is also an integer. However,

division operations commonly may not be performed by ALU as division

operations may produce a result in a floating-point number. Instead, the

floating-point unit (FPU) usually handles the division operations; other

non-integer calculations can also be performed by FPU.

Additionally, engineers can design the ALU to perform any type of

operation. However, ALU becomes costlier as the operations become

more complex because ALU destroys more heat and takes up more space

in the CPU. This is the reason for making powerful ALUs by engineers,

which provides the surety that the CPU is fast and powerful as well.

The calculations needed by the CPU are handled by the arithmetic logic

unit (ALU); most of the operations among them are logical. If the CPU is

made more powerful, which is made based on how the ALU is designed.

Then it creates more heat and takes more power or energy. Therefore,

there must be moderation between how complex and powerful ALU is

and not be costly. This is the main reason the faster CPUs are costlier;

hence, they take up much power and destroy more heat. Arithmetic and

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

63

logic operations are the main operations that are performed by the ALU;

it also perform bit-shifting operations.

Although the ALU is a major component in the processor, the ALU's

design and function may be different in the different processors. For case,

some ALUs are designed to perform only integer calculations, and some

are for floating-point operations. Some processors include a single

arithmetic logic unit to perform operations, and others may contain

numerous ALUs to complete calculations. The operations performed by

ALU are:

Logical Operations: The logical operations consist of NOR, NOT, AND,

NAND, OR, XOR, and more.

Bit-Shifting Operations: It is responsible for displacement in the

locations of the bits to the right or left by a certain number of places that

is known as a multiplication operation.

Arithmetic Operations: Although it performs multiplication and

division, this refers to bit addition and subtraction. But multiplication and

division operations are more costly to make. In the place of multiplication,

addition can be used as a substitute and subtraction for division.

Arithmetic Logic Unit (ALU) Signals

A variety of input and output electrical connections are contained by the

ALU, which led to casting the digital signals between the external

electronics and ALU.

ALU input gets signals from the external circuits, and in response,

external electronics get outputs signals from ALU.

Data: Three parallel buses are contained by the ALU, which include two

input and output operand. These three buses handle the number of signals,

which are the same.

Opcode: When the ALU is going to operate, it is described by the

operation selection code what type of operation an ALU is going to

perform arithmetic or logic operation.

Status

Output: The results of the ALU operations are provided by the status

outputs in the form of supplemental data as they are multiple signals.

Usually, status signals like overflow, zero, carry out, negative, and more

are contained by general ALUs. When the ALU completes each

operation, the external registers contain the status output signals. These

signals are stored in the external registers that led to making them

available for future ALU operations.

Input: When ALU once operates, the status inputs allow ALU to access

further information to complete the operation successfully. Furthermore,

stored carry-out from a previous ALU operation is known as a single

"carry-in" bit.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

64

3.2 Configurations of the ALU

The description of how ALU interacts with the processor is given below.

Every arithmetic logic unit includes the following configurations:

Instruction Set Architecture

Accumulator

Stack

Register to Register

Register Stack

Register Memory

Accumulator

The intermediate result of every operation is contained by the

accumulator, which means Instruction Set Architecture (ISA) is not more

complex because it is only required to hold one bit.

Generally, they are much faster and less complex but to make the

Accumulator more stable; additional codes need to be written to fill it with

proper values. Unluckily, with a single processor, it is very difficult to

find Accumulators to execute parallelism. An example of an Accumulator

is the desktop calculator.

Stack

Whenever the latest operations are performed, these are stored on the

stack that holds programs in top-down order, which is a small register.

When the new programs are added to execute, they push to put the old

programs.

Register-Register Architecture

It includes a place for 1 destination instruction and 2 source instructions,

also known as a 3-register operation machine. This Instruction Set

Architecture must be longer for storing three operands, 1 destination, and

2 sources. After the end of the operations, writing the results back to the

Registers would be difficult, and also the length of the word should be

longer. However, it can cause more issues with synchronization if the

write-back rule is followed at this place.

The MIPS component is an example of the register-to-register

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

65

Architecture. For input, it uses two operands, and for output, it uses a third

distinct component. The storage space is hard to maintain as each needs a

distinct memory; therefore, it has to be premium at all times. Moreover,

it might be difficult to perform some operations.

Register - Stack Architecture

Generally, the combination of Register and Accumulator operations is

known as Register-Stack Architecture. The operations that need to be

performed in the register-stack Architecture are pushed onto the top of the

stack. And its results are held at the top of the stack. With the help of

using the Reverse polish method, more complex mathematical operations

can be broken down. Some programmers, to represent operands, use the

concept of a binary tree. It means that the reverse polish methodology can

be easy for these programmers, whereas it can be difficult for other

programmers. To carry out Push and Pop operations, there is a need to be

new hardware created.

Self-Assessment Exercises 1

Fill in the gaps in the sentences below with the most suitable words:

1. The ALU is responsible for performing ________ and ________

operations.

2. ALU stands for ________ ________ Unit.

3. The three main types of operations performed by ALU are

arithmetic operations, logical operations, and ________ operations.

Register and Memory

In this architecture, one operand comes from the register, and the other

comes from the external memory as it is one of the most complicated

architectures. The reason behind this is that every program might be very

long as they require to be held in full memory space. Generally, this

technology is integrated with Register-Register Register technology and

practically cannot be used separately.

ALUs, in addition to doing addition and subtraction calculations, also

handle the process of multiplication of two integers because they are

designed to perform integer calculations; thus, the result is likewise an

integer. Division operations, on the other hand, are frequently not done

by ALU since division operations can result in a floating-point value.

Instead, division operations are normally handled by the floating-point

unit (FPU), which may also execute other non-integer calculations.

Engineers can also design the ALU to do any operation they choose.

However, as the operations become more sophisticated, ALU becomes

more expensive since it generates more heat as well as takes up more

space on the CPU. Therefore, engineers create powerful ALUs, ensuring

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

66

that the CPU is both quick and powerful.

The ALU performs the computations required by the CPU; most of the

operations are logical. If the CPU is built more powerful, it will be

designed based on the ALU. Then it generates more heat and consumes

more energy or power. As a result, there must be a balance between how

intricate and strong ALU is and how much it costs. The primary reason

why faster CPUs are more expensive is that they consume more power

and generate more heat due to their ALUs. The ALU’s major functions

are arithmetic and logic operations, as well as bit-shifting operations.

3.3 Operations Performed by ALU

Although the ALU is a critical component of the CPU, the design and

function of the ALU may vary amongst processors. Some ALUs, for

example, are designed solely to conduct integer calculations, whereas

others are built to perform floating-point computations. Some processors

have a single arithmetic logic unit that performs operations, whereas

others have many ALUs that conduct calculations. ALU’s operations are

as follows:

1. Arithmetic Operators: It refers to bit subtraction and addition, despite

the fact that it does multiplication and division. Multiplication and

division processes, on the other hand, are more expensive to do. Addition

can be used in place of multiplication, while subtraction can be used in

place of division.

2. Bit-Shifting Operators: It is responsible for a multiplication

operation, which involves shifting the locations of a bit to the right or left

by a particular number of places.

3. Logical Operations: These consist of NOR, AND, NOT, NAND,

XOR, OR, and more.

ALU Signals

The ALU contains a variety of electrical input and output connections,

which result in the digital signals being cast between the ALU and the

external electronics. External circuits send signals to the ALU input, and

the ALU sends signals to the external electronics.

Opcode: The operation selection code specifies whether the ALU will

conduct arithmetic or a logic operation when it performs the operation.

Data: The ALU contains three parallel buses, each with two input and

output operands. These three buses are in charge of the same amount of

signals.

Advantages of ALU

ALU has various advantages, which are as follows:

• It supports parallel architecture and applications with high

performance.

• It can get the desired output simultaneously and combine integer

and floating-point variables.

• It has the capability of performing instructions on a very large set

and has a high range of accuracy.

• Two arithmetic operations in the same code like addition and

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

67

multiplication or addition and subtraction, or any two operands can be

combined by the ALU. For case, A+B*C.

• Throughout the whole program, they remain uniform, and they are

spaced in a way that they cannot interrupt parts in between.

• In general, it is very fast; hence, it provides results quickly.

• There are no sensitivity issues and no memory wastage with ALU.

• They are less expensive and minimize the logic gate requirements.

Disadvantages of ALU

The disadvantages of ALU are discussed below:

• With the ALU, floating variables have more delays, and the

designed controller is not easy to understand.

• The bugs would occur in our result if memory space were definite.

• It is difficult to understand amateurs as their circuit is complex;

also, the concept of pipelining is complex to understand.

• A proven disadvantage of ALU is that there are irregularities in

latencies.

• Another demerit is rounding off, which impacts accuracy.

Self-Assessment Exercises 2

Answer the following questions by choosing the most suitable option:

1. Which of the following is NOT an advantage of ALU?

 A. High processing speed

 B. Support for parallel architecture

 C. Unlimited memory capacity

 D. No sensitivity issues

2. What type of operations does ALU handle for floating-point numbers?

 A. All floating-point operations

 B. Limited floating-point operations

 C. No floating-point operations

 D. Only division operations

4.0 CONCLUSION

An arithmetic logic unit (ALU) is a key component of a computer’s

central processor unit. The ALU performs all arithmetic and logic

operations that must be performed on instruction words. The ALU is split

into two parts in some microprocessor architectures: the AU and the LU.

ALU conducts arithmetic and logic operations. It is a major component

of the CPU in a computer system. An integer unit (IU) is just an integrated

circuit within a GPU or GPU that performs the last calculations in the

processor. It can execute all arithmetic and logic operations, including

Boolean comparisons, such as subtraction, addition, and shifting (XOR,

OR, AND, and NOT operations). Binary numbers can also perform

bitwise and mathematical operations. AU (arithmetic unit) and LU (logic

unit) are two types of arithmetic logic units. The ALU’s operands and

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

68

code instruct it on which operations to perform based on the incoming

data. When the ALU has finished processing the data, it sends the result

to the computer memory.

5.0 SUMMARY

The ALU is a crucial component of the CPU responsible for executing

arithmetic operations like addition, subtraction, multiplication, and

division, as well as logical operations. It also handles bitwise operations

and comparisons, enabling the CPU to make decisions based on

conditional statements. Comprising input registers for operands,

operational logic for performing calculations, and result storage, the

ALU's efficiency directly influences the CPU's overall performance. By

facilitating essential computations and decision-making processes, the

ALU plays a key role in the execution of programs and the overall

functionality of the computer.

6.0 TUTOR MARKED ASSIGNMENT

1. What are some of the potential advantages of the ALU?

2. What are the chief characteristics of the ALU?

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1. Arithmetic, logical

2. Arithmetic Logic

3. Bit-shifting

Self-Assessment Exercise 2

1. C

2. B

7.0 References/ Further reading

Herlihy, M., Shavit, N., Luchangco, V., & Spear, M. (2020). The art of

multiprocessor programming. Newnes.

Jayanti, S. V. (2023). Simple, Fast, Scalable, and Reliable Multiprocessor

Algorithms. Massachusetts Institute of Technology.

Brandenburg, B. B. (2022). Multiprocessor real-time locking protocols.

In Handbook of Real-Time Computing (pp. 347-446). Singapore:

Springer Nature Singapore.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

69

UNIT 3 THE CONTROL UNIT

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 The Control Unit

3.2 Types of Control Unit

3.3 Advantages and Disadvantages of Control Unit

4.0 Conclusion

5.0 Summary

6.0 Tutor- Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

The control unit (CU) is a critical component of a computer's central

processing unit (CPU), responsible for directing the operation of the

processor. It orchestrates the fetching, decoding, and execution of

instructions by generating appropriate control signals to the various

subsystems within the CPU. The CU ensures that the data flows correctly

between the CPU, memory, and input/output devices, and it regulates the

execution of instructions by controlling the timing and sequencing of

operations. By interpreting the instructions in a program, the control unit

determines which arithmetic, logic, or control operation is to be

performed next and manages the data paths accordingly.

The control unit can be designed using either hardwired logic or

microprogramming. A hardwired control unit uses fixed logic circuits to

control signals, which makes it fast but less flexible and more difficult to

modify or update. In contrast, a microprogrammed control unit stores

control signals in a memory-based control store, allowing for easier

modifications and updates at the cost of some performance. The CU plays

a crucial role in the overall function and efficiency of the CPU, ensuring

that all operations are performed correctly and in the proper sequence,

thereby enabling the execution of complex computational tasks.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• Explain the control unit.

• Discuss the types of control units.

• Understand how the control unit works.

A Central Processing Unit is the most important component of a

computer system. A control unit is a part of the CPU. A control unit

controls the operations of all parts of the computer but it does not carry

out any data processing operations.

What is a Control Unit?

The Control Unit is the part of the computer’s central processing unit

(CPU), which directs the operation of the processor. It was included as

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

70

part of the Von Neumann Architecture by John von Neumann. It is the

responsibility of the control unit to tell the computer’s memory,

arithmetic/logic unit, and input and output devices how to respond to the

instructions that have been sent to the processor. It fetches internal

instructions of the programs from the main memory to the processor

instruction register, and based on this register contents, the control unit

generates a control signal that supervises the execution of these

instructions. A control unit works by receiving input information which it

converts into control signals, which are then sent to the central processor.

The computer’s processor then tells the attached hardware what

operations to perform. The functions that a control unit performs are

dependent on the type of CPU because the architecture of the CPU varies

from manufacturer to manufacturer.

Examples of devices that require a CU are:

Control Processing Units(CPUs)

Graphics Processing Units(GPUs)

Functions of the Control Unit

• It coordinates the sequence of data movements into, out of, and

between a processor’s many sub-units.

• It interprets instructions.

• It controls data flow inside the processor.

• It receives external instructions or commands which it converts to

a sequence of control signals.

• It controls many execution units (i.e. ALU, data buffers,

and registers) contained within a CPU.

• It also handles multiple tasks, such as fetching, decoding,

execution handling, and storing results.

3.2 Types of Control Units

There are two types of control units:

Hardwired

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

71

Micro programmable control unit.

Hardwired Control Unit

In the Hardwired control unit, the control signals that are important for

instruction execution control are generated by specially designed

hardware logical circuits, in which we cannot modify the signal

generation method without a physical change of the circuit structure. The

operation code of an instruction contains the basic data for control signal

generation. In the instruction decoder, the operation code is decoded. The

instruction decoder constitutes a set of many decoders that decode

different fields of the instruction opcode.

As a result, few output lines going out from the instruction decoder

obtains active signal values. These output lines are connected to the inputs

of the matrix that generates control signals for execution units of the

computer. This matrix implements logical combinations of the decoded

signals from the instruction opcode with the outputs from the matrix that

generates signals representing consecutive control unit states and with

signals coming from the outside of the processor, e.g. interrupt signals.

The matrices are built in a similar way as a programmable logic arrays.

Control signals for an instruction execution have to be generated not in a

single time point but during the entire time interval that corresponds to

the instruction execution cycle. Following the structure of this cycle, the

suitable sequence of internal states is organized in the control unit. A

number of signals generated by the control signal generator matrix are

sent back to inputs of the next control state generator matrix.

This matrix combines these signals with the timing signals, which are

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

72

generated by the timing unit based on the rectangular patterns usually

supplied by the quartz generator. When a new instruction arrives at the

control unit, the control units is in the initial state of new instruction

fetching. Instruction decoding allows the control unit enters the first state

relating execution of the new instruction, which lasts as long as the timing

signals and other input signals as flags and state information of the

computer remain unaltered.

A change of any of the earlier mentioned signals stimulates the change of

the control unit state. This causes that a new respective input is generated

for the control signal generator matrix. When an external signal appears,

(e.g. an interrupt) the control unit takes entry into the next control state

which is the state concerned with the reaction to this external signal (e.g.

interrupt processing).

The values of flags and state variables of the computer are used to select

suitable states for the instruction execution cycle. The last states in the

cycle are control states that commence fetching the next instruction of the

program: sending the program counter content to the main memory

address buffer register and next, reading the instruction word to the

instruction register of the computer. When the ongoing instruction is the

stop instruction that ends program execution, the control unit enters an

operating system state, in which it waits for the next user directive.

Micro Programmable control unit

The fundamental difference between these unit structures and the

structure of the hardwired control unit is the existence of the control store

that is used for storing words containing encoded control signals

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

73

mandatory for instruction execution. In microprogrammed control units,

subsequent instruction words are fetched into the instruction register in a

normal way. However, the operation code of each instruction is not

directly decoded to enable immediate control signal generation but it

comprises the initial address of a microprogram contained in the control

store.

With a single-level control store: In this, the instruction opcode from

the instruction register is sent to the control store address register. Based

on this address, the first microinstruction of a microprogram that

interprets the execution of this instruction is read to the microinstruction

register. This microinstruction contains in its operation part encoded

control signals, normally as few bit fields. In a set microinstruction field

decoder, the fields are decoded. The microinstruction also contains the

address of the next microinstruction of the given instruction

microprogram and a control field used to control activities of the

microinstruction address generator. The last mentioned field decides

the addressing mode (addressing operation) to be applied to the address

embedded in the ongoing microinstruction. In microinstructions along

with conditional addressing mode, this address is refined by using the

processor condition flags that represent the status of computations in the

current program.

The last microinstruction in the instruction of the given microprogram is

the microinstruction that fetches the next instruction from the main

memory to the instruction register.

With a two-level control store: In this, in a control unit with a two-level

control store, besides the control memory for microinstructions, a nano-

https://www.geeksforgeeks.org/addressing-modes/

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

74

instruction memory is included. In such a control unit, microinstructions

do not contain encoded control signals. The operation part of

microinstructions contains the address of the word in the nano-instruction

memory, which contains encoded control signals. The nano-instruction

memory contains all combinations of control signals that appear in

microprograms that interpret the complete instruction set of a given

computer, written once in the form of nano-instructions. In this way,

unnecessary storing of the same operation parts of microinstructions is

avoided. In this case, microinstruction words can be much shorter than

with the single-level control store. It gives a much smaller size in bits of

the microinstruction memory and, as a result, a much smaller size of the

entire control memory. The microinstruction memory contains the control

for the selection of consecutive microinstructions, while those control

signals are generated on the basis of nano-instructions. In nano-

instructions, control signals are frequently encoded using a 1 bit/ 1 signal

method that eliminates decoding.

Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. What is the primary function of the Control Unit?

 A. To perform arithmetic calculations

 B. To store data permanently

 C. To control the operations of all parts of the computer

 D. To provide input/output interfaces

2. Which type of control unit is more flexible but slower?

 A. Hardwired Control Unit

 B. Micro-programmed Control Unit

 C. Both are equally flexible

 D. Neither is flexible

3. What type of computers typically use hardwired control units?

 A. CISC computers

 B. RISC computers

 C. Both CISC and RISC

 D. Mainframe computers only

Differences between Hardwired Control unit and Micro-programmed

Control unit

There are differences between Micro-programmed CU and Hardwired

CU, which are described as follows:

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

75

Hardwired Control Unit Micro-programmed Control Unit

With the help of a hardware

circuit, we can implement the

hardwired control unit. In other

words, we can say that it is a

circuitry approach.

While with the help of

programming, we can implement

the micro-programmed control

unit.

The hardwired control unit uses

the logic circuit so that it can

generate the control signals,

which are required for the

processor.

The micro-programmed CU uses

microinstruction so that it can

generate the control signals.

Usually, control memory is used to

store these microinstructions.

In this CU, the control signals are

going to be generated in the form

of hard wired. That's why it is

very difficult to modify the

hardwired control unit.

It is very easy to modify the micro-

programmed control unit because

the modifications are going to be

performed only at the instruction

level.

In the form of logic gates,

everything has to be realized in

the hardwired control unit. That's

why this CU is more costly

compared to the micro-

programmed control unit.

The micro-programmed control

unit is less costly compared to the

hardwired CU because this control

unit only requires the

microinstruction to generate the

control signals.

The complex instructions cannot

be handled by a hardwired

control unit because when we

design a circuit for this

instruction, it will become

complex.

The micro-programmed control

unit is able to handle the complex

instructions.

Because of the hardware

implementation, the hardwired

control unit is able to use a

limited number of instructions.

The micro-programmed control

unit is able to generate control

signals for many instructions.

The hardwired control unit is

used in those types of computers

that also use the RISC (Reduced

instruction Set Computers).

The micro-programmed control

unit is used in those types of

computers that also use the CISC

(Complex instruction Set

Computers).

In the hardwired control unit, the In this CU, the microinstructions

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

76

hardware is used to generate only

the required control signals.

That's why this control unit is

faster compared to the micro-

programmed control unit.

are used to generate control signals.

That's why this CU is slower than

the hardwired control unit.

Some Other differences between Micro-programmed control unit and

Hardwire control unit

Now we will describe these differences on the basis of some parameters,

such as speed, cost, modification, instruction decoder, control memory,

etc. These differences are described as follows:

Speed

In the hardwired control unit, the speed of operations is very fast. In

contrast, the micro-programmed control unit needs frequent memory

access. So the speed of operation of a micro-programmed control unit is

slow.

Modification

If we want to do some modifications to the Hardwired control unit, we

have to redesign the entire unit. In contrast, if we want to do some

modification in the micro-programmed control unit, we can do that just

by changing the microinstructions in the control memory. In this case, the

more flexible control unit is a micro-programmed control unit.

Cost

The implementation of a Hardwire control unit is very much compared to

the Micro-programmed control unit. In this case, the micro-programmed

control unit will save our money at the time of implementation.

Handling Complex Instructions

If we try to handle the complex instructions with the help of a hardwired

control unit, it will be very difficult for us to handle them. But if we try

to handle the complex instructions with the help of a micro-programmed

control unit, it will be very easy for us to handle them. In this case, also,

the Micro-programmed control unit is better.

Instruction decoding

In the hardwired control unit, if we want to perform instruction decoding,

it will be very difficult. But if we do the same thing in a micro-

programmed control unit, it will be very easy for us.

Instruction set size

A small instruction set is used by the hardwired CU. On the other hand, a

large instruction set is used by the micro-programmed control unit.

Control Memory

The hardwired control unit does not use the control memory to generate

the control signals, but the micro-programmed CU needs to use the

control memory to generate the control signals.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

77

Applications

The hardwired control unit is used in those types of processors that use a

simple instruction set. This set is called a Reduced Instruction Set

Computer. On the other hand, a micro-programmed control unit is used

in those types of processors that basically use a complex instruction set.

This set is called a Complex Instruction Set Computer.

Advantages of a Well-Designed Control Unit

Efficient instruction execution: A well-designed control unit can

execute instructions more efficiently by optimizing the instruction

pipeline and minimizing the number of clock cycles required for each

instruction.

Improved performance: A well-designed control unit can improve the

performance of the CPU by increasing the clock speed, reducing the

latency, and improving the throughput.

Support for complex instructions: A well-designed control unit can

support complex instructions that require multiple operations, reducing

the number of instructions required to execute a program.

Improved reliability: A well-designed control unit can improve the

reliability of the CPU by detecting and correcting errors, such as memory

errors and pipeline stalls.

Lower power consumption: A well-designed control unit can reduce

power consumption by optimizing the use of resources, such as registers

and memory, and reducing the number of clock cycles required for each

instruction.

Better branch prediction: A well-designed control unit can improve

branch prediction accuracy, reducing the number of branch

mispredictions and improving performance.

Improved scalability: A well-designed control unit can improve the

scalability of the CPU, allowing it to handle larger and more complex

workloads.

Better support for parallelism: A well-designed control unit can better

support parallelism, allowing the CPU to execute multiple instructions

simultaneously and improve overall performance.

Improved security: A well-designed control unit can improve the

security of the CPU by implementing security features such as address

space layout randomization and data execution prevention.

Lower cost: A well-designed control unit can reduce the cost of the CPU

by minimizing the number of components required and improving

manufacturing efficiency.

Disadvantages of a Poorly-Designed Control Unit

Reduced performance: A poorly designed control unit can reduce the

performance of the CPU by introducing pipeline stalls, increasing the

latency, and reducing the throughput.

Increased complexity: A poorly designed control unit can increase the

complexity of the CPU, making it harder to design, test, and maintain.

Higher power consumption: A poorly designed control unit can

https://www.geeksforgeeks.org/difference-between-register-and-memory/
https://www.geeksforgeeks.org/difference-between-register-and-memory/

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

78

increase power consumption by inefficiently using resources, such as

registers and memory, and requiring more clock cycles for each

instruction.

Reduced reliability: A poorly designed control unit can reduce the

reliability of the CPU by introducing errors, such as memory errors and

pipeline stalls.

Limitations on instruction set: A poorly designed control unit may limit

the instruction set of the CPU, making it harder to execute complex

instructions and limiting the functionality of the CPU.

Inefficient use of resources: A poorly designed control unit may

inefficiently use resources such as registers and memory, leading to

wasted resources and reduced performance.

Limited scalability: A poorly designed control unit may limit the

scalability of the CPU, making it harder to handle larger and more

complex workloads.

Poor support for parallelism: A poorly designed control unit may limit

the ability of the CPU to support parallelism, reducing the overall

performance of the system.

Security vulnerabilities: A poorly designed control unit may introduce

security vulnerabilities, such as buffer overflows or code injection attacks.

Higher cost: A poorly designed control unit may increase the cost of the

CPU by requiring additional components or increasing the manufacturing

complexity.

4.0 CONCLUSION

In the world of computer architecture, the Control Unit plays a pivotal

role in ensuring the effective and efficient functioning of modern

computing systems. Delving into the intricacies of this vital component

allows you to gain insight into its core functions, applications, and

different types. This article will explore the various aspects of the Control

Unit, including its definition and key role in computer architecture,

managing the data flow, and its relation to the Central Processing Unit

(CPU). Moreover, the article will navigate the different types of Control

Units, such as Hardwired and Microprogrammed Control Units,

discussing their advantages, disadvantages, flexibility, and adaptability.

You will also discover the crucial differences between these Control Unit

types and understand how to choose the appropriate one for your

computer system. Furthermore, it will examine the diverse applications of

the Control Unit in various contexts of computer science, such as personal

computers, laptops, modern devices, and the rapidly evolving Internet of

Things (IoT). By understanding the importance and role of the Control

Unit, you can appreciate its impact on shaping the future of computing

technology.

5.0 SUMMARY

A control unit, or CU, is circuitry within a computer’s processor that

directs operations. It instructs the memory, logic unit, and both output and

input devices of the computer on how to respond to the program’s

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

79

instructions. CPUs and GPUs are examples of devices that use control

units.

The Control Unit has a significant role within a computer system, which

includes:

• Fetching instructions from memory

• Decoding instructions to determine what operation to perform

• Controlling and coordinating the execution of instructions

• Managing data flow between various units of the computer

• Monitoring and regulating the synchronization of input and output

devices

6.0 TUTOR MARKED ASSIGNMENT

1. Explain Control Unit

2. List and briefly explain the types of control unit

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1. C

2. B

3. B

7.0 References/ further reading

Ellis, G. (2012). Control system design guide: using your computer to

understand and diagnose feedback controllers. Butterworth-Heinemann.

Åström, K. J., & Wittenmark, B. (2013). Computer-controlled systems:

theory and design. Courier Corporation.

Gopal, M. (2008). Control systems: principles and design. McGraw-Hill

Science, Engineering & Mathematics.

Wolf, M. (2012). Computers as components: principles of embedded

computing system design. Elsevier.

Clark, R. N. (1996). Control system dynamics. Cambridge University

Press.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

80

MODULE 4 INSTRUCTION SET ARCHITECTURE

Unit 1 General Overview of Instruction Set Architecture

Unit 2 Instruction Cycle

UNIT 1 GENERAL OVERVIEW OF INSTRUCTION SET

ARCHITECTURE

CONTENT

1.0 Introduction

2.0 Objectives

3.0 Main content

3.1 Instruction Set

3.2 Taxonomy

3.3 Addressing Mode

3.4 Intruction Format

4.0 Conclusion

5.0 Summary

6.0 Tutor marked assignment

7.0 References/ Further Reading

1.0 INTRODUCTION

An Instruction Set Architecture (ISA) is part of the abstract model of a

computer that defines how the CPU is controlled by the software. The

ISA acts as an interface between the hardware and the software,

specifying both what the processor is capable of doing as well as how it

gets done. The ISA provides the only way through which a user is able to

interact with the hardware. It can be viewed as a programmer’s manual

because it’s the portion of the machine that’s visible to the assembly

language programmer, the compiler writer, and the application

programmer.

The ISA defines the supported data types, the registers, how the hardware

manages main memory, key features (such as virtual memory), which

instructions a microprocessor can execute, and the input/output model of

multiple ISA implementations. The ISA can be extended by adding

instructions or other capabilities, or by adding support for larger addresses

and data values.

2.0 OBJECTIVES

At the end of this unit, you should be able to

Understand the importance of the instruction set architecture,

Discuss the features that need to be considered when designing the

instruction set architecture.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

81

3.1 Instruction Set Overview

We’ve already seen that the computer architecture course consists of two

components – the instruction set architecture and the computer

organization itself. The ISA specifies what the processor is capable of

doing and the ISA, how it gets accomplished. So the instruction set

architecture is the interface between your hardware and the software. The

only way that you can interact with the hardware is the instruction set of

the processor. To command the computer, you need to speak its language

and the instructions are the words of a computer’s language and the

instruction set is basically its vocabulary. Unless you know the

vocabulary and you have a very good vocabulary, you cannot gain good

benefits out of the machine. ISA is the portion of the machine which is

visible to either the assembly language programmer or a compiler writer

or an application programmer. It is the only interface that you have,

because the instruction set architecture is the specification of what the

computer can do and the machine has to be fabricated in such a way that

it will execute whatever has been specified in your ISA. The only way

that you can talk to your machine is through the ISA. This gives you an

idea of the interface between the hardware and software.

 Let us assume you have a high-level program written in C which is

independent of the architecture on which you want to work. This high-

level program has to be translated into an assembly language program

which is specific to a particular architecture. Let us say you find that this

consists of a number of instructions like LOAD, STORE, ADD, etc.,

where, whatever you had written in terms of high-level language now

have been translated into a set of instructions which are specific to the

specific architecture. All these instructions that are being shown here are

part of the instruction set architecture of the MIPS architecture. These are

all English like and this is not understandable to the processor because the

processor is after all made up of digital components which can understand

only zeros and ones. So this assembly language will have to be finely

translated into machine language, object code which consists of zeros and

ones. So the translation from your high-level language to your assembly

language and the binary code will have to be done with the compiler and

the assembler.

 We shall look at the instruction set features, and see what will go into the

zeros and ones and how to interpret the zeros and ones, as data,

instructions, or addresses. The ISA that is designed should last through

many implementations, it should have portability, it should have

compatibility, it should be used in many different ways so it should have

generality and it should also provide convenient functionality to

other levels. The taxonomy of ISA is given below.

 3.2 Taxonomy

 ISAs differ based on the internal storage in a processor. Accordingly, the

ISA can be classified as follows, based on where the operands are stored

and whether they are named explicitly or implicitly:

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

82

 Single accumulator organization, which names one of the general

purpose registers as the accumulator and uses it to necessarily store one

of the operands. This indicates that one of the operands is implied to be

in the accumulator and it is enough if the other operand is specified along

with the instruction.

General register organization, which specifies all the operands explicitly.

Depending on whether the operands are available in memory or registers,

it can be further classified as

– Register – register, where registers are used for storing operands. Such

architectures are also called load–store architectures, as only load and

store instructions can have memory operands.

 – Register – memory, where one operand is in a register and the

other one in memory.

 – Memory – memory, where all the operands are specified as

memory operands.

Stack organization, where the operands are put into the stack and the

operations are carried out on the top of the stack. The operands are

implicitly specified here.

 Let us assume you have to perform the operation A = B + C, where all

three operands are memory operands. In the case of an accumulator-based

ISA, where we assume that one of the general-purpose registers is being

designated as an accumulator and one of the operands will always be

available in the accumulator, you have to initially load one operand into

the accumulator and the ADD instruction will only specify the operand’s

address. In the GPR-based ISA, you have three different classifications.

In the register memory ISA, One operand has to be moved into any

register and the other one can be a memory operand. In the register–

register ISA, both operands will have to be moved to two registers and

the ADD instruction will only work on registers. The memory–memory

ISA permits both memory operands. So you can directly add. In a stack-

based ISA, you’ll have to first of all push both operands onto the stack

and then simply give an add instruction which will add the top two

elements of the stack and then store the result in the stack. So you can see

from these examples that you have different ways of executing the same

operation, and it obviously depends upon the ISA. Among all these ISAs,

It is the register – register ISA that is very popular and used in all RISC

architectures.

We shall now look at what are the different features that need to be

considered when designing the instruction set architecture. They are:

Types of instructions (Operations in the Instruction set)

Types and sizes of operands

Addressing Modes

Addressing Memory

Encoding and Instruction Formats

Compiler-related issues

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

83

 First of all, you have to decide on the types of instructions, i.e. what are

the various instructions that you want to support in the ISA. The tasks

carried out by a computer program consisting of a sequence of small steps,

such as multiplying two numbers, moving data from a register to a

memory location, testing for a particular condition like zero, reading a

character from the input device or sending a character to be displayed to

the output device, etc.. A computer must have the following types of

instructions:

• Data transfer instructions

• Data manipulation instructions

• Program sequencing and control instructions

• Input and output instructions

 Data transfer instructions perform data transfer between the various

storage places in the computer system, viz. registers, memory, and I/O.

Since, both the instructions as well as data are stored in memory, the

processor needs to read the instructions and data from memory. After

processing, the results must be stored in memory. Therefore, two basic

operations involving the memory are needed,

namely, Load (or Read or Fetch) and Store (or Write). The Load

operation transfers a copy of the data from the memory to the processor

and the Store operation moves the data from the processor to memory.

Other data transfer instructions are needed to transfer data from one

register to another or from/to I/O devices and the processor.

Data manipulation instructions perform operations on data and indicate

the computational capabilities for the processor. These operations can be

arithmetic operations, logical operations or shift operations. Arithmetic

operations include addition (with and without carry), subtraction (with

and without borrow), multiplication, division, increment, decrement and

finding the complement of a number. The logical and bit manipulation

instructions include AND, OR, XOR, Clear carry, set carry, etc. Similarly,

you can perform different types of shift and rotate operations.

 We generally assume a sequential flow of instructions. That is,

instructions that are stored in consequent locations are executed one after

the other. However, you have program sequencing and control

instructions that help you change the flow of the program. This is best

explained with an example. Consider the task of adding a list

of n numbers. A possible sequence is given below.

Move DATA1, R0

Add DATA2, R0

Add DATA3, R0

Add DATAn, R0

Move R0, SUM

 The addresses of the memory locations containing the n numbers are

symbolically given as DATA1, DATA2, . . , DATAn, and a separate Add

instruction is used to add each Databer to the contents of register R0. After

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

84

all the numbers have been added, the result is placed in memory location

SUM. Instead of using a long list of Add instructions, it is possible to

place a single Add instruction in a program loop, as shown below:

Move N, R1

Clear R0

LOOP Determine address of “Next” number and add “Next” number to

R0

Decrement R1

Branch > 0, LOOP

Move R0, SUM

 The loop is a straight-line sequence of instructions executed as many

times as needed. It starts at location LOOP and ends at the instruction

Branch>0. During each pass through this loop, the address of the next list

entry is determined, and that entry is fetched and added to R0. The address

of an operand can be specified in various ways, as will be described in the

next section. For now, you need to know how to create and control a

program loop. Assume that the number of entries in the list, n, is stored in

memory location N. Register R1 is used as a counter to determine the

number of times the loop is executed. Hence, the contents of location N

are loaded into register R1 at the beginning of the program. Then, within

the body of the loop, the instruction, Decrement R1 reduces the contents

of R1 by 1 each time through the loop. The execution of the loop is

repeated as long as the result of the decrement operation is greater than

zero.

 You should now be able to understand branch instructions. This type of

instruction loads a new value into the program counter. As a result, the

processor fetches and executes the instruction at this new address, called

the branch target, instead of the instruction at the location that follows the

branch instruction in sequential address order. The branch instruction can

be conditional or unconditional. An unconditional branch instruction

does a branch to the specified address irrespective of any condition.

A conditional branch instruction causes a branch only if a specified

condition is satisfied. If the condition is not satisfied, the PC is

incremented in the normal way, and the next instruction in sequential

address order is fetched and executed. In the example above, the

instruction Branch>0 LOOP (branch if greater than 0) is a conditional

branch instruction that causes a branch to locate LOOP if the result of the

immediately preceding instruction, which is the decremented value in

register R1, is greater than zero.

This means that the loop is repeated as long as there are entries in the list

that are yet to be added to R0. At the end of the nth pass through the loop,

the Decrement instruction produces a value of zero, and, hence, branching

does not occur. Instead, the Move instruction is fetched and executed. It

moves the final result from R0 into memory location SUM. Some ISAs

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

85

refer to such instructions as Jumps. The processor keeps track of

information about the results of various operations for use by subsequent

conditional branch instructions. This is accomplished by recording the

required information in individual bits, often called condition code flags.

These flags are usually grouped together in a special processor register

called the condition code register or status register. Individual condition

code flags are set to 1 or cleared to 0, depending on the outcome of the

operation performed. Some of the commonly used flags are: Sign, Zero,

Overflow, and Carry.

The call and return instructions are used in conjunction with subroutines.

A subroutine is a self-contained sequence of instructions that performs a

given computational task. During the execution of a program, a

subroutine may be called to perform its function many times at various

points in the main program. Each time a subroutine is called, a branch is

executed to the beginning of the subroutine to start executing its set of

instructions. After the subroutine has been executed, a branch is made

back to the main program, through the return instruction. Interrupts can

also change the flow of a program. A program interrupt refers to the

transfer of program control from a currently running program to another

service program as a result of an external or internally generated request.

Control returns to the original program after the service program is

executed.

The interrupt procedure is, in principle, quite similar to a subroutine call

except for three variations: (1) The interrupt is usually initiated by an

internal or external signal apart from the execution of an instruction (2)

the address of the interrupt service program is determined by the hardware

or from some information from the interrupt signal or the instruction

causing the interrupt; and (3) an interrupt procedure usually stores all the

information necessary to define the state of the CPU rather than storing

only the program counter. Therefore, when the processor is interrupted, it

saves the current status of the processor, including the return address, the

register contents and the status information called the Processor Status

Word (PSW), and then jumps to the interrupt handler or the interrupt

service routine. Upon completing this, it returns to the main program.

Interrupts are handled in detail in the next unit on Input / Output.

Input and Output instructions are used for transferring information

between the registers, memory, and the input/output devices. It is possible

to use special instructions that exclusively perform I/O transfers, or use

memory – related instructions itself to do I/O transfers.

Suppose you are designing an embedded processor that is meant to be

performing a particular application, then definitely you will have to bring

instructions that are specific to that particular application. When you’re

designing a general-purpose processor, you only look at including all

general types of instructions. Examples of specialized instructions may be

media and signal processing-related instructions, say vector type of

instructions which try to exploit the data level parallelism, where the same

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

86

operation of addition or subtraction is going to be done on different data

and then you may have to look at saturating arithmetic operations,

multiply and accumulator instructions.

The data types and sizes indicate the various data types supported by the

processor and their lengths. Common operand types –Half word (16 bits),

Word (32 bits), Single Precision Floating Point (1 Word), Double

Precision Floating Point (2 Words), Integers – two’s complement binary

numbers, Characters usually in ASCII, Floating point numbers following

the IEEE Standard 754 and Packed and unpacked decimal numbers.

Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. What does ISA stand for?

 A. Internal System Architecture

 B. Instruction Set Architecture

 C. Integrated Software Application

 D. Input/Storage/Access

2. Which ISA type is used in RISC architectures?

 A. Accumulator-based

 B. Stack-based

 C. Register-register (Load-store)

 D. Memory-memory

3. What are the main categories of instructions in an ISA?

 A. Data transfer, data manipulation, program control, I/O

 B. Fetch, decode, execute, store

 C. Read, write, calculate, display

 D. Input, process, output, feedback

3.3 Addressing Modes

 The operation field of an instruction specifies the operation to be

performed. This operation must be executed on some data that is given

straight away or stored in computer registers or memory words. The way

the operands are chosen during program execution is dependent on

the addressing mode of the instruction. The addressing mode specifies a

rule for interpreting or modifying the address field of the instruction

before the operand is referenced. In this section, you will learn the most

important addressing modes found in modern processors.

 Computers use addressing mode techniques to accommodate one or both

of the following:

 1. To give programming versatility to the user by providing such facilities

as pointers to memory, counters for loop control, indexing of data, and

program relocation.

 2. To reduce the number of bits in the addressing field of the instruction.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

87

 When you write programs in a high-level language, you use constants,

local and global variables, pointers, and arrays. When translating a high-

level language program into assembly language, the compiler must be

able to implement these constructs using the facilities provided in the

instruction set of the computer in which the program will be run. The

different ways in which the location of an operand is specified in an

instruction are referred to as addressing modes. Variables and constants

are the simplest data types and are found in almost every computer

program. In assembly language, a variable is represented by allocating a

register or a memory location to hold its value.

 Register mode — The operand is the contents of a processor register; the

name (address) of the register is given in the instruction.

Absolute mode — The operand is in a memory location; the address of

this location is given explicitly in the instruction. This is also

called Direct.

 Address and data constants can be represented in assembly language

using the Immediate mode.

 Immediate mode — The operand is given explicitly in the instruction.

For example, the instruction Move 200immediate, R0 places the value

200 in register R0. Clearly, the Immediate mode is only used to specify

the value of a source operand. A common convention is to use the sharp

sign (#) in front of the value to indicate that this value is to be used as an

immediate operand. Hence, we write the instruction above in the form

Move #200, R0. Constant values are used frequently in high-level

language programs. For example, the statement A = B + 6 contains the

constant 6. Assuming that A and B have been declared earlier as variables

and may be accessed using the Absolute mode, this statement may be

compiled as follows:

Move B, R1

Add #6, R1

Move R1, A

Constants are also used in assembly language to increment a counter, test

for some bit pattern, and so on.

 Indirect mode — In the addressing modes that follow, the instruction

does not give the operand or its address explicitly. Instead, it provides

information from which the memory address of the operand can be

determined. We refer to this address as the effective address (EA) of the

operand. In this mode, the effective address of the operand is the contents

of a register or memory location whose address appears in the instruction.

We denote indirection by placing the name of the register or the memory

address given in the instruction in parentheses. For example, consider the

instruction, Add (R1), R0. To execute the Add instruction, the processor

uses the value in register R1 as the effective address of the operand. It

requests a read operation from the memory to read the contents of this

location. The value read is the desired operand, which the processor adds

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

88

to the contents of register R0. Indirect addressing through a memory

location is also possible as indicated in the instruction Add (A), R0. In

this case, the processor first reads the contents of memory location A, then

requests a second read operation using this value as an address to obtain

the operand. The register or memory location that contains the address of

an operand is called a pointer. Indirection and the use of pointers are

important and powerful concepts in programming. Changing the contents

of location A in the example fetches different operands to add to register

R0.

 Index mode — The next addressing mode you learn provides a different

kind of flexibility for accessing operands. It is useful in dealing with lists

and arrays. In this mode, the effective address of the operand is generated

by adding a constant value (displacement) to the contents of a register.

The register used may be either a special register provided for this

purpose, or may be any one of the general-purpose registers in the

processor. In either case, it is referred to as an index register. We indicate

the Index mode symbolically as X(Ri), where X denotes the constant

value contained in the instruction and Ri is the name of the register

involved. The effective address of the operand is given by EA = X + [Ri].

The contents of the index register are not changed in the process of

generating the effective address. In an assembly language program, the

constant X may be given either as an explicit number or as a symbolic

name representing a numerical value. When the instruction is translated

into machine code, the constant X is given as a part of the instruction and

is usually represented by fewer bits than the word length of the computer.

Since X is a signed integer, it must be sign-extended to the register length

before being added to the contents of the register.

 Relative mode — The above discussion defined the Index mode using

general-purpose processor registers. A useful version of this mode is

obtained if the program counter, PC, is used instead of a general-purpose

register. Then, X (PC) can be used to address a memory location that is X

bytes away from the location presently pointed to by the program counter.

Since the addressed location is identified as “relative” to the program

counter, which always identifies the current execution point in a program,

the name Relative mode is associated with this type of addressing. In this

case, the effective address is determined by the Index mode using the

program counter in place of the general-purpose register Ri. This

addressing mode is generally used with control flow instructions.

 Though this mode can be used to access data operands. But, its most

common use is to specify the target address in branch instructions. An

instruction such as Branch > 0 LOOP, which we discussed earlier, causes

program execution to go to the branch target location identified by the

name LOOP if the branch condition is satisfied. This location can be

computed by specifying it as an offset from the current value of the

program counter. Since the branch target may be either before or after the

branch instruction, the offset is given as a signed number. Recall that

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

89

during the execution of an instruction, the processor increments the PC to

point to the next instruction. Most computers use this updated value in

computing the effective address in the Relative mode.

The two modes described next are useful for accessing data items in

successive locations in the memory.

 Autoincrement mode — The effective address of the operand is the

contents of a register specified in the instruction. After accessing the

operand, the contents of this register are automatically incremented to

point to the next item in a list. We denote the Autoincrement mode by

putting the specified register in parentheses, to show that the contents of

the register are used as the effective address, followed by a plus sign to

indicate that these contents are to be incremented after the operand is

accessed. Thus, the Autoincrement mode is written as (Ri)+.

 Autodecrement mode — As a companion for the Autoincrement mode,

another useful mode accesses the items of a list in the reverse order. In

the autodecrement mode, the contents of a register specified in the

instruction are first automatically decremented and are then used as the

effective address of the operand. We denote the Autodecrement mode by

putting the specified register in parentheses, preceded by a minus sign to

indicate that the contents of the register are to be decremented before

being used as the effective address. Thus, we write – (Ri). In this mode,

operands are accessed in descending address order. You may wonder why

the address is decremented before it is used in the Autodecrement mode

and incremented after it is used in the Autoincrement mode. The main

reason for this is that these two modes can be used together to implement

a stack.

3.4 Instruction Formats

The previous sections have shown you that the processor can execute

different types of instructions and there are different ways of specifying

the operands. Once all this is decided, this information has to be presented

to the processor in the form of an instruction format. The number of bits

in the instruction is divided into groups called fields. The most common

fields found in instruction formats are

 1. An operation code field that specifies the operation to be performed.

The number of bits will indicate the number of operations that can be

performed.

 2. An address field that designates a memory address or a processor

register. The number of bits depends on the size of memory or the number

of registers.

 3. A mode field that specifies the way the operand or the effective address

is determined. This depends on the number of addressing modes

supported by the processor.

 The number of address fields may be three, two or one depending on the

type of ISA used. Also, observe that, based on the number of operands

that are supported and the size of the various fields, the length of the

instructions will vary. Some processors fit all the instructions into a single

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

90

sized format, whereas others make use of formats of varying sizes.

Accordingly, you have a fixed format or a variable format.

 Interpreting memory addresses – you basically have two types of

interpretation of the memory addresses – Big endian arrangement and the

little endian arrangement. Memories are normally arranged as bytes and

a unique address of a memory location is capable of storing 8 bits of

information. But when you look at the word length of the processor, the

word length of the processor may be more than one byte. Suppose you

look at a 32-bit processor, it is made up of four bytes. These four bytes

span over four memory locations. When you specify the address of a word

how you would specify the address of the word – are you going to specify

the address of the most significant byte as the address of the word (big

end) or specify the address of the least significant byte (little end) as the

address of the word. That distinguishes between a big endian arrangement

and a little endian arrangement. IBM, Motorola, HP follow the big endian

arrangement and Intel follows the little endian arrangement. Also, when

a data spans over different memory locations, and if you try to access a

word which is aligned with the word boundary, we say there is an

alignment. If you try to access the words not starting at a word boundary,

you can still access, but they are not aligned. Whether there is support to

access data that is misaligned is a design issue. Even if you’re allowed to

access data that is misaligned, it normally takes more number of memory

cycles to access the data.

 Finally looking at the role of compilers the compiler has a lot of role to

play when you’re defining the instruction set architecture. Gone are the

days where people thought that compilers and architectures are going to

be independent of each other. Only when the compiler knows the internal

architecture of the processor it’ll be able to produce optimised code. So

the architecture will have to expose itself to the compiler and the compiler

will have to make use of whatever hardware is exposed. The ISA should

be compiler friendly. The basic ways in which the ISA can help the

compiler are regularity, orthogonality and the ability to weigh different

options.

Finally, all the features of an ISA are discussed with respect to the 80×86

and MIPS.

 1. Class of ISA: Nearly all ISAs today are classified as general-purpose

register architectures, where the operands are either registers or memory

locations. The 80×86 has 16 general-purpose registers and 16 that can

hold floating point data, while MIPS has 32 general-purpose and 32

floating-point registers. The two popular versions of this class

are register-memory ISAs such as the 80×86, which can access memory

as part of many instructions, and load-store ISAs such as MIPS, which

can access memory only with load or store instructions. All recent ISAs

are load-store.

 2. Memory addressing: Virtually all desktop and server computers,

including the 80×86 and MIPS, use byte addressing to access memory

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

91

operands. Some architectures, like MIPS, require that objects must

be aligned. An access to an object of size s bytes at byte address A is

aligned if A mod s = 0. The 80×86 does not require alignment, but

accesses are generally faster if operands are aligned.

 3. Addressing modes: In addition to specifying registers and constant

operands, addressing modes specify the address of a memory object.

MIPS addressing modes are Register, Immediate (for constants), and

Displacement, where a constant offset is added to a register to form the

memory address. The 80×86 supports those three plus three variations of

displacement: no register (absolute), two registers (based indexed with

displacement), two registers where one register is multiplied by the size

of the operand in bytes (based with scaled index and displacement). It has

more like the last three, minus the displacement field: register indirect,

indexed, and based with scaled index.

 4. Types and sizes of operands: Like most ISAs, MIPS and 80×86

support operand sizes of 8-bit (ASCII character), 16-bit (Unicode

character or half word), 32-bit (integer or word), 64-bit (double word or

long integer), and IEEE 754 floating point in 32-bit (single precision) and

64-bit (double precision). The 80×86 also supports 80-bit floating point

(extended double precision).

 5. Operations: The general categories of operations are data transfer,

arithmetic logical, control, and floating point. MIPS is a simple and easy-

to-pipeline instruction set architecture, and it is representative of the RISC

architectures being used in 2006. The 80×86 has a much richer and larger

set of operations.

 6. Control flow instructions: Virtually all ISAs, including 80×86 and

MIPS, support conditional branches, unconditional jumps, procedure

calls, and returns. Both use PC-relative addressing, where the branch

address is specified by an address field that is added to the PC. There are

some small differences. MIPS conditional branches (BE, BNE, etc.) test

the contents of registers, while the 80×86 branches (JE, JNE, etc.) test

condition code bits set as side effects of arithmetic/logic operations. MIPS

procedure call (JAL) places the return address in a register, while the

80×86 call (CALLF) places the return address on a stack in memory.

7. Encoding an ISA : There are two basic choices for encoding: fixed

length and variable length. All MIPS instructions are 32 bits long, which

simplifies instruction decoding (shown below). The 80×86 encoding is

variable length, ranging from 1 to 18 bytes. Variable-length instructions

can take less space than fixed-length instructions, so a program compiled

for the 80×86 is usually smaller than the same program compiled for

MIPS. Note that the choices mentioned above will affect how the

instructions are encoded into a binary representation. For example, the

number of registers and the number of addressing modes both have a

significant impact on the size of instructions, as the register field and

addressing mode field can appear many times in a single instruction.

some types of instruction sets?

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

92

The various types of instruction sets include the following:

Complex instruction set computer. CISC processors have an additional

microcode or microprogramming layer where instructions act as small

programs. Programmable instructions are stored in fast memory and can

be updated. More instructions are included in CISC instruction sets than

in other types of instruction sets. A single instruction can initiate multiple

actions by the computer, such as a single add command launching

multiple memory access load and store instructions.

Reduced instruction set computer. RISC architecture has hard-wired

control. It does not require a microcode but has a greater base instruction

set. RISC also uses a smaller and more compact instruction set with a

fixed instruction format. RISC processors are designed to process faster

and more efficiently.

Enhancement instruction sets. These instruction types are more familiar

because they are often used in marketing CPUs. Examples of this go back

to the 166-megahertz Intel Pentium with Multimedia Extensions (MMX)

technologies. It was introduced in 1996 and marketed with enhanced Intel

CPU multimedia performance. MMX refers to the extended instruction

set.

Self-Assessment Exercises 2

Fill in the gaps in the sentences below with the most suitable words:

1. The ________ mode specifies that the operand is given explicitly in the

instruction.

2. In ________ mode, the effective address is the contents of a register

specified in the instruction.

3. The ________ addressing mode uses the program counter to address

memory locations relative to the current instruction.

4.0 CONCLUSION

Basically means that an ISA describes the design of a Computer in

terms of the basic operations it must support. The ISA is not concerned

with the implementation-specific details of a computer. It is only

concerned with the set or collection of basic operations the computer must

support. For example, the AMD Athlon and the Core 2 Duo processors

have entirely different implementations but they support more or less the

same set of basic operations as defined in the x86 Instruction Set.

5.0 SUMMARY

An instruction set is a group of commands for a CPU in machine

language. The term can refer to all possible instructions for a CPU or a

subset of instructions to enhance its performance in certain situations. To

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

93

summarize, we have looked at the taxonomy of ISAs and the various

features that need to be decided while designing the ISA. We also looked

at example ISAs, the MIPS ISA and the 80×86 ISA.

6.0 Tutor marked assignment

1. What is a instruction set?

 6.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1. B

2. C

3. A

Self-Assessment Exercise 2

1. Immediate

2. Register

3. Relative

7.0 REFERENCES/ FURTHER READING

Computer Architecture – A Quantitative Approach , John L. Hennessy

and David A. Patterson, 5th.Edition, Morgan Kaufmann, Elsevier, 2011.

Computer Organization and Design – The Hardware / Software Interface,

David A. Patterson and John L. Hennessy, 4th.Edition, Morgan

Kaufmann, Elsevier, 2009.

Computer Organization, Carl Hamacher, Zvonko Vranesic and Safwat

Zaky, 5th.Edition, McGraw-Hill Higher Education, 2011.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

94

UNIT 2 INSTRUCTION CYCLE

CONTENT

1.0 INTRODUCTION

2.0 OBJECTIVES

3.0 MAIN CONTENT

3.1 Instruction Cycle

3.2 Different Instruction Cycles

3.3 Uses of various Instruction Cycles

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

The instruction cycle is a basic computer system that deals with the central

processor unit's core operations. It is also known as the fetch-decode-

execute cycle, and is a fundamental concept in computer architecture and

microprocessor operation. It represents the series of steps that a

computer's central processing unit (CPU) goes through to execute a

single-machine instruction.

2.0 OBJECTIVES

At the end of this unit, you should be able to

understand the instruction cycle.

3.1 Instruction Cycle

A program residing in the memory unit of a computer consists of a

sequence of instructions. These instructions are executed by the processor

by going through a cycle for each instruction. An instruction cycle, also

known as the fetch-decode-execute cycle is the basic operational process

of a computer. This process is repeated continuously by the CPU from

boot up to shut down of the computer.

In a basic computer, each instruction cycle consists of the following

phases:

Fetch instruction from memory.

Decode the instructions.

Read the effective address from memory.

Execute the instruction.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

95

During this phase, the computer system boots up and the Operating

System loads into the central processing unit's main memory. It begins

when the computer system starts.

Following are the steps that occur during an instruction cycle:

1. Fetch the Instruction

The first phase is instruction retrieval. Each instruction executed in a

central processing unit uses the fetch instruction. During this phase, the

central processing unit sends the PC to MAR and then the READ

instruction to a control bus. After sending a read instruction on the data

bus, the memory returns the instruction that was stored at that exact

address in the memory. The CPU then copies data from the data bus into

MBR, which it then copies to registers. The pointer is incremented to the

next memory location, allowing the next instruction to be fetched from

memory. The instruction is fetched from memory address that is stored in

PC (Program Counter) and stored in the instruction register IR. At the end

of the fetch operation, PC is incremented by 1 and it then points to the

next instruction to be executed.

2. Decode the Instruction

The second phase is instruction decoding. During this step, the CPU

determines which instruction should be fetched from the instruction and

what action should be taken on the instruction. The instruction's opcode

is also retrieved from memory, and it decodes the related operation that

must be performed for the instruction. The instruction in the IR is

executed by the decoder.

3. Read the Effective Address

The third phase is the reading of an effective address. The operation's

decision is made during this phase. Any memory-type operation or non-

memory-type operation can be used. Direct memory instruction and

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

96

indirect memory instruction are the two types of memory instruction

available. If the instruction has an indirect address, the effective address

is read from the memory. Otherwise, operands are directly read in case of

immediate operand instruction.

4. Execute the Instruction

The last step is to carry out the instructions. The instruction is finally

carried out at this stage. The instruction is carried out, and the result is

saved in the register. The CPU gets prepared for the execution of the next

instruction after the completion of each instruction. The execution time of

each instruction is calculated, and this information is used to determine

the processor's processing speed. The Control Unit passes the information

in the form of control signals to the functional unit of the CPU. The result

generated is stored in the main memory or sent to an output device.

The cycle is then repeated by fetching the next instruction. Thus in this

way, the instruction cycle is repeated continuously.

The sequence of operations performed by the CPU during its execution

of instructions is presented in the figure. As long as there are instructions

to execute, the next instruction is fetched from the main memory. The

instruction is executed based on the operation specified in the opcode field

of the instruction. After the instruction execution, a test is made to

determine whether an interrupt has occurred. An interrupt handling

routine needs to be invoked in case of an interrupt.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

97

3.2 Different Instruction Cycles

The concept of instruction cycles is integral to understanding how a

computer's central processing unit (CPU) executes instructions. Here's an

explanation of each of these cycles:

Fetch Cycle

Description: The fetch cycle is the initial stage of the instruction cycle.

It involves retrieving the next instruction from memory.

Operation: The CPU uses the program counter (PC) to access the

memory location where the next instruction is stored. The instruction is

fetched and placed in the instruction register (IR).

Purpose: This cycle ensures that the CPU has the next instruction ready

for decoding and execution.

Indirect Cycle

Description: The indirect cycle is sometimes required when instructions

involve accessing memory locations that contain addresses or pointers to

the actual data.

Operation: During this cycle, the CPU may use an address obtained from

the previous instruction to access another memory location, which holds

the data or another address to be used in the next cycle.

Purpose: The indirect cycle enables the CPU to follow memory

references and retrieve the actual data required for execution.

Execute Cycle

Description: The execute cycle is where the central processing unit

performs the operation specified by the decoded instruction.

Operation: The CPU carries out arithmetic computations, logical

operations, data transfers, or any other actions as dictated by the

instruction. This may involve accessing data from registers or memory,

performing calculations, and updating registers or memory locations.

Purpose: The execution stage accomplishes the intended operation and is

where the actual work of the instruction takes place.

Interrupt Cycle

Description: The interrupt cycle comes into play when an external event

or condition triggers an interrupt, causing the CPU to temporarily suspend

its current execution to handle the interrupt request.

Operation: The CPU saves its current state (program counter and other

relevant information) before jumping to an interrupt service routine (ISR).

After servicing the interrupt, the CPU may restore its state and continue

execution.

Purpose: Interrupt cycles enable a CPU to respond to external events or

asynchronous inputs promptly without losing important data or program

context.

Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. How many basic phases does an instruction cycle consist of?

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

98

 A. Two (fetch and execute)

 B. Three (fetch, decode, execute)

 C. Four (fetch, decode, execute, store)

 D. Five (fetch, decode, read, execute, store)

2. What happens during the decode phase?

 A. The instruction is retrieved from memory

 B. The CPU determines what operation to perform

 C. The instruction is executed

 D. The result is stored in memory

3. Which cycle handles external events that interrupt normal processing?

 A. Fetch Cycle

 B. Execute Cycle

 C. Indirect Cycle

 D. Interrupt Cycle

3.3 Uses of Different Instruction Cycles

The different instruction cycles (fetch, indirect, execute, and interrupt) in

a computer's operation have different purposes and applications, ensuring

efficient and responsive processing. Here are the uses of each instruction

cycle:

Fetch Cycle

Use: Retrieving the next instruction from memory.

Application: Essential for the sequential execution of program

instructions, ensuring the CPU has the next instruction ready for decoding

and execution.

Example: Fetching the opcode of the next instruction from memory to be

decoded and executed.

Indirect Cycle

Use: Handling instructions that involve accessing memory locations

containing addresses or pointers.

Application: Facilitates memory referencing, allowing the CPU to

navigate through multiple levels of indirection to access the actual data or

instructions.

Example: Accessing data through a memory location that contains a

pointer to the actual data's location.

Execute Cycle

Use: Performing the operation specified by the decoded instruction.

Application: Where the actual computation or data manipulation occurs,

making it the heart of instruction execution.

Example: Carrying out arithmetic calculations, logical operations, data

transfers, or any actions dictated by the instruction.

Interrupt Cycle

Use: Handling external events or requests for interrupting the CPU's

current execution.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

99

Application: Ensures prompt response to hardware or software events

such as hardware interrupts, system calls, or exceptions, allowing the

CPU to temporarily switch tasks.

Example: Responding to a keyboard input interrupt, saving the CPU's

current state, and invoking an interrupt service routine (ISR).

Why do we Need an Instruction Cycle?

The instruction cycle of a computer system is necessary for understanding

the flow of instructions and the execution of an instruction in a computer

processor.

It is responsible for the complete flow of instructions from the start of the

computer system through its shutdown. The instruction cycle helps to

understand the internal flow of the central processing unit, allowing any

faults to be immediately resolved.

It deals with a computer processor's basic operations and demands a

detailed understanding of the many steps involved.

All instructions for the computer processor system follow the fetch-

decode-execute cycle.

Importance of Instruction Cycle

The instructions are the basic activities conducted in the main memory of

the central processing unit. That is why they are so crucial to the processor

system.

It's a set of stages that helps us to understand how instruction flows. The

instruction cycle allows the computer processor to see the sequence of

instructions from start to finish.

It is common for all instruction sets to require a thorough understanding

to perform all operations efficiently.

The processing time of a programme can be easily calculated using the

instruction cycle, which aids in determining the processor's speed.

The processor's speed determines how many instructions can be executed

simultaneously in the central processing unit.

Advantages of Instruction Cycle

Efficiency: The fetch-decode-execute cycle, consisting of instruction

cycles, allows CPUs to execute instructions sequentially and efficiently,

ensuring that each instruction is processed in a well-defined manner.

Flexibility: CPUs can handle a wide range of instructions, from

arithmetic operations to data transfers, by following the execution cycle

for each instruction type.

Control Flow: The instruction cycle controls the flow of program

execution, advancing to the next instruction after each cycle, allowing for

precise execution and program control.

Responsiveness: CPUs can quickly respond to external events and

handle interrupts or exceptions using the interrupt cycle, making them

versatile and suitable for various tasks.

Disadvantages of Instruction Cycle

Clock Speed: The speed of instruction execution is often constrained by

the system's clock speed, limiting the number of instructions that can be

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

100

executed in a given period.

Pipeline Stalls: In pipelined architectures, where multiple instructions

are processed simultaneously, issues like pipeline stalls can lead to

inefficiencies if instructions depend on one another.

Resource Limitations: CPU execution is subject to resource limitations,

such as the availability of registers, memory access times, and cache sizes,

which can affect performance.

Instruction Set Limitations: CPUs are limited by their instruction set

architectures (ISAs), which may not include certain specialized

instructions or features required for specific applications.

Complexity: The fetch-decode-execute cycle is an intricate process, and

the complexity of instruction execution can lead to design challenges and

potential errors in the processor's microarchitecture.

Input-Output Configuration

In computer architecture, input-output devices act as an interface between

the machine and the user.

Instructions and data stored in the memory must come from some input

device. The results are displayed to the user through some output device.

The following block diagram shows the input-output configuration for a

basic computer.

o The input-output terminals send and receive information.

o The amount of information transferred will always have eight bits

of an alphanumeric code.

o The information generated through the keyboard is shifted into an

input register 'INPR'.

o The information for the printer is stored in the output register

'OUTR'.

o Registers INPR and OUTR communicate with a communication

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

101

interface serially and with the AC in parallel.

o The transmitter interface receives information from the keyboard

and transmits it to INPR.

o The receiver interface receives information from OUTR and sends

it to the printer serially.

4.0 CONCLUSION

we have thoroughly discussed on Instruction Cycle in Computer

Architecture. We also learned about different instruction cycles, the uses

of different instruction cycles, their needs, and their importance. Later in

the end we discussed the advantages and disadvantages of the instruction

Cycle in Computer Architecture.

5.0 SUMMARY

In computer organization, an instruction cycle, also known as a fetch-

decode-execute cycle, is the basic operation performed by a CPU to

execute an instruction. The instruction cycle consists of several steps,

each of which performs a specific function in the execution of the

instruction. The major steps in the instruction cycle are:

Fetch: In the fetch cycle, the CPU retrieves the instruction from memory.

The instruction is typically stored at the address specified by the program

counter (PC). The PC is then incremented to point to the next instruction

in memory.

Decode: In the decode cycle, the CPU interprets the instruction and

determines what operation needs to be performed. This involves

identifying the opcode and any operands that are needed to execute the

instruction.

Execute: In the execute cycle, the CPU performs the operation specified

by the instruction. This may involve reading or writing data from or to

memory, performing arithmetic or logic operations on data, or

manipulating the control flow of the program.

Some additional steps may be performed during the instruction cycle,

depending on the CPU architecture and instruction set:

Fetch operands: In some CPUs, the operands needed for an instruction

are fetched during a separate cycle before the execute cycle. This is called

the fetch operands cycle.

Store results: In some CPUs, the results of an instruction are stored

during a separate cycle after the execute cycle. This is called the store

results cycle.

Interrupt handling: In some CPUs, interrupt handling may occur during

any cycle of the instruction cycle. An interrupt is a signal that the CPU

receives from an external device or software that requires immediate

attention. When an interrupt occurs, the CPU suspends the current

instruction and executes an interrupt handler to service the interrupt.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

102

6.0 Tutor marked assignment

1. What is the Instruction cycle?

2. What is five stage instruction cycle?

3. Why is instruction cycle important?

4. What are the steps of the instructional cycle?

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1. C

2. B

3. D

7.0 REFERENCES/ FURTHER READING

Computer Architecture – A Quantitative Approach , John L. Hennessy

and David A. Patterson, 5th.Edition, Morgan Kaufmann, Elsevier, 2011.

Computer Organization and Design – The Hardware / Software Interface,

David A. Patterson and John L. Hennessy, 4th.Edition, Morgan

Kaufmann, Elsevier, 2009.

Computer Organization, Carl Hamacher, Zvonko Vranesic and Safwat

Zaky, 5th.Edition, McGraw-Hill Higher Education, 2011.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

103

MODULE 5 THE MEMORY SYSTEMS

Unit 1 Computer Memory

Unit 2 Memory Hierarchy

Unit 3 Virtual Memory

Unit 4 Cache Memory

UNIT 1 COMPUTER MEMORY

1.0Introduction

2.0Objectives

3.0 Main content

3.1 Memory Characteristics and Organization

3.2 Types of Memory

4.0Conclusion

5.0 Summary

6.0 Tutor marked assignment 7.0References and further reading

1.0 INTRODUCTION

A computer is an electronic device and that accepts data, processes that

data, and gives the desired output. It performs programmed computation

with accuracy and speed. In other words, the computer takes data as input

and stores the data/instructions in the memory (use them when required).

After processing the data, it converts into information. Finally, gives the

output. Here, input refers to the raw data that we want the machine to

process and return to us as a result, output refers to the response that the

machine provides in response to the raw data entered and the processing

of data may involve analyzing, searching, distributing, storing data, etc.

Thus, we can also call a computer data processing system.

2.0 OBJECTIVES

At the end of this unit, you should be able to

- Understand the memory characteristics and organization

- Explain the types of memory

3.1 Memory Characteristics and Organization

Memory is one of the important subsystems in a Computer. It is a volatile

storage system that stores Instructions and Data. Unless the program gets

loaded in memory in executable form, the CPU cannot execute it. CPU

Interacts closely with memory for execution.

There are many other storage systems in a computer that share the

characteristics of memory. So why have so many storage systems?

Everyone desires to have very large, super fast, and cheap storage.

Storage cost varies depending on the type of storage. Memory devices are

hierarchically connected to design a cost-effective memory. When we say

memory, we refer to the main memory, commonly referred to as RAM.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

104

Memory (Storage Device) Characteristics

Although Memory and Storage devices share many characteristics, there

is uniqueness in each one of them. Some of the most important

characteristics are as below:

Access Time - The access time depends on the physical nature of the

storage medium and the access mechanisms used. Refer to Figure 1. At

the bottom is access time in Milliseconds, while at the top of the triangle,

it is less than 10 ns.

For memory, the access time can be calculated as the time difference

between the request to the memory and the service by memory.

Access Mode - Access mode is a function of both memory organization

and the inherent characteristics of the storage technology of the device.

Access mode has relevance to the access time. There are three types of

access methods.

Random Access: If storage locations can be accessed in any order then

access time is independent of the storage location being accessed. Ex:

Semiconductor memory.

Serial Access: Memory whose storage locations can be accessed only in

a certain predetermined sequence. Ex: Magnetic tape

Semi Random: The access is partly random and there apart serial. Ex:

Hard disk, CD drives. It is random to locate the tracks and access within

the track is serial.

Retention - This is the characteristic of memory relating to the

availability of written data for reading at a later time. Retention is a very

important characteristic in the design of a system.

Cycle Time - Is defined as the minimum time between two consecutive

access operations. This is greater than the access time. Generally, when

once access is over, there is a time gap required to start the next access,

although minimal. Cycle time = Access time + defined time delay. Ex:

You ask the shop keeper of what is the speed of the memory strip.

Capacity - Measured in Units of Bytes, Kilobytes, Megabytes,

Gigabytes, Terabytes, Petabytes. In figure 1, the bottom of the triangle

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

105

has a larger capacity and the ones at the top have the far lesser capacity.

Ex: the Memory strip as 2GB, 4GB, Hard disk as 1TB, GPRs are 128

words.

Cost Per bit – Factors of cost per bit are Access time, Cycle time, Storage

capacity, the purchase cost of the device and the hardware to use the

device (controller). We don’t have much choice on this; designers care

for this.

Reliability – It is related to the lifetime of the device. Measured as Mean

Time Between Failure (MTBF), in the units of days/years. Ex: Think of

how frequently you replace your Hard disk while the CPU is still usable.

There is a capacity/performance/price gap between each pair of adjacent

levels of storage types (Refer figure 1). The objective of multilevel

memory organisation is to achieve a good trade-off between cost, storage

capacity and performance for the memory system as a whole.

Multilevel hierarchical memory is based on the principle of Locality of

Reference i.e. the address generated by a program tend to be localised to

successive address locations and therefore predictable. In figure 1, the

unit of data movement between successive levels is also inscribed.

CPU Memory Interface

Level 0 to Level 3 of the storage devices are volatile memory subsystems

which are accessed by CPU directly. The Level 4 and level 5 are storage

devices which are classified as I/O devices and will be dealt with later as

a separate category. So let us see about the CPU Memory Interface basics.

The CPU interacts with memory for two operations i.e READ or WRITE.

READ is for getting either instructions or Data (Operands). Write is

generally for writing results upon instruction execution. To access

memory, the address of the memory location is required. This address is

always loaded in the Memory Address Register (MAR) by the CPU.

READ or WRITE operation is always carried out on the location specified

by MAR. In the case of READ, the memory returns the data to the CPU

while in the case of WRITE the data to be written onto the memory

location is given by CPU. The data exchange happens via the Memory

Data Register (MDR). The CPU communicates to the memory about the

READ or WRITE activity as control signals. Also, some more signals to

time the validity of information on the Address bus and Data bus are part

of Control Signals.

The communication about the address and data and the associated Control

signals happen in the bus. A bus is a set of physical connections between

two entities used for communication using electrical signals. This external

bus has three components namely,(i) Address bus, (ii) Data bus, and (iii)

Control Signals. Memory Address Register (MAR) and the Memory Data

Register (MDR) play an important role in communication. The control

signals are generated by the Control Unit. For more clarity refer to figure

16.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

106

Figure 16: CPU Memory Communication Interface

Please note that the address bus is unidirectional and the data bus is

bidirectional for obvious reasons discussed above. The control bus is also

bidirectional. Further, the width of the address bus and data bus have

critical meaning. The CPU can READ or WRITE data equal to the width

of the data bus in one access. Generally, the width of the data bus equals

the CPU word width. The width or the number of bits in the address bus

has a bearing on the maximum number of locations that can be addressed

or accessed by CPU. The signals on the bus are synchronised with the

CPU clock.

Data transfer rate or bandwidth is one of the measures of the

performance of the external bus between CPU and Memory. The

maximum amount of information that can be transferred to or from the

memory per unit time is the data transfer rate or bandwidth and is

measured in bits or words per second.

Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. Which type of memory is volatile?

 A. ROM

 B. RAM

 C. Flash memory

 D. Hard disk

2. What does DRAM stand for?

 A. Direct Random Access Memory

 B. Dynamic Random Access Memory

 C. Dual Random Access Memory

 D. Digital Random Access Memory

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

107

3. Which characteristic describes how long it takes to access data in

memory?

 A. Capacity

 B. Access Time

 C. Cycle Time

 D. Retention

Memory Capacity Integration

Memory is often available in standard capacity strips or modules. More

often we need to integrate these modules to meet our requirement. When

more than a strip is assembled, how do the expansion and chaos-free

access happen is a curiosity. We will see now.

A typical memory module has the interface as shown in figure 17. This is

in line with the signals on the external bus. A mention is required on

RD/WR' and CS'. RD/WR' is a signal for READ or WRITE operation in

mutual exclusion. When the signal is logical HIGH it is READ operation

and when Logical LOW, WRITE is enabled on the Memory Module. CS'

is Chip Select and active LOW i.e when this signal is logical LOW, only

then the module is enabled and any operation can be done on this module.

This Chip Select signal is useful in memory expansion. When RD is

active, DataOUT comes from the module, while WR’ is active the

direction of data is DATA-IN.

Figure 17: Typical Memory Module Interface

Memory expansion to the desired capacity is achieved by two means:

Increasing the word width by a factor (Refer figure 18)

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

108

Figure 18: Memory expansion by word width

Increasing the Number of Words (address) by a Factor (Refer figure 19)

Figure 19: Memory expansion by address range

When the capacity is expanded to increase the addressable range, the CS

signal plays a role in selecting the correct block. The MSB bit(s) of the

address is(are) decoded and connected to each module as CS' enable. In

figure 19, a simple inverter (NOT logic) is used on the MSB line as there

are only 2 modules. If there are more modules then a decoder is required.

This kind of extrapolation is feasible to any capacity in multiples of the

basic module.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

109

3.2 Types of Computer Memory

In general, computer memory is of three types:

Primary memory

Secondary memory

Cache memory

Now we discuss each type of memory one by one in detail:

1. Primary Memory

It is also known as the main memory of the computer system. It is used to

store data and programs or instructions during computer operations. It

uses semiconductor technology and hence is commonly called

semiconductor memory. Primary memory is of two types:

RAM (Random Access Memory): It is a volatile memory. Volatile

memory stores information based on the power supply. If the power

supply fails/is interrupted/stopped, all the data and information on this

memory will be lost. RAM is used for booting up or starting the computer.

It temporarily stores programs/data which has to be executed by

the processor. RAM is of two types:

S RAM (Static RAM): S RAM uses transistors and the circuits of this

memory are capable of retaining their state as long as the power is applied.

This memory consists of the number of flip flops with each flip flop

storing 1 bit. It has less access time and hence, it is faster.

DRAM (Dynamic RAM): D RAM uses capacitors and transistors and

stores the data as a charge on the capacitors. They contain thousands of

memory cells. It needs refreshing of charge on the capacitor after a few

milliseconds. This memory is slower than S RAM.

ROM (Read Only Memory): It is a non-volatile memory. Non-volatile

memory stores information even when there is a power supply failed/

interrupted/stopped. ROM is used to store information that is used to

operate the system. As its name refers to read-only memory, we can only

read the programs and data that is stored on it. It contains some electronic

fuses that can be programmed for a piece of specific information. The

information stored in the ROM in binary format. It is also known as

permanent memory. ROM is of four types:

MROM(Masked ROM): Hard-wired devices with a pre-programmed

collection of data or instructions were the first ROMs. Masked ROMs are

a type of low-cost ROM that works in this way.

PROM (Programmable Read Only Memory): This read-only memory

is modifiable once by the user. The user purchases a blank PROM and

uses a PROM program to put the required contents into the PROM. Its

content can’t be erased once written.

EPROM (Erasable Programmable Read Only Memory): EPROM is

an extension to PROM where you can erase the content of ROM by

exposing it to Ultraviolet rays for nearly 40 minutes.

EEPROM (Electrically Erasable Programmable Read Only

Memory): Here the written contents can be erased electrically. You can

delete and reprogramme EEPROM up to 10,000 times. Erasing and

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

110

programming take very little time, i.e., nearly 4 -10 ms(milliseconds).

Any area in an EEPROM can be wiped and programmed selectively.

2. Secondary Memory

It is also known as auxiliary memory and backup memory. It is a non-

volatile memory and used to store a large amount of data or information.

The data or information stored in secondary memory is permanent, and it

is slower than primary memory. A CPU cannot access secondary memory

directly. The data/information from the auxiliary memory is first

transferred to the main memory, and then the CPU can access it.

Characteristics of Secondary Memory

It is a slow memory but reusable.

It is a reliable and non-volatile memory.

It is cheaper than primary memory.

The storage capacity of secondary memory is large.

A computer system can run without secondary memory.

In secondary memory, data is stored permanently even when the power is

off.

Types of Secondary Memory

1. Magnetic Tapes: Magnetic tape is a long, narrow strip of plastic film

with a thin, magnetic coating on it that is used for magnetic recording.

Bits are recorded on tape as magnetic patches called RECORDS that run

along many tracks. Typically, 7 or 9 bits are recorded concurrently. Each

track has one read/write head, which allows data to be recorded and read

as a sequence of characters. It can be stopped, started moving forward or

backward or rewound.

2. Magnetic Disks: A magnetic disk is a circular metal or a plastic plate

and these plates are coated with magnetic material. The disc is used on

both sides. Bits are stored in magnetized surfaces in locations called

tracks that run in concentric rings. Sectors are typically used to break

tracks into pieces.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

111

Hard discs are discs that are permanently attached and cannot be removed

by a single user.

3. Optical Disks: It’s a laser-based storage medium that can be written to

and read. It is reasonably priced and has a long lifespan. The optical

disc can be taken out of the computer by occasional users.

Types of Optical Disks

CD – ROM

It’s called a compact disk. Only read from memory.

Information is written to the disc by using a controlled laser beam to burn

pits on the disc surface.

It has a highly reflecting surface, which is usually aluminium.

The diameter of the disc is 5.25 inches.

16000 tracks per inch is the track density.

The capacity of a CD-ROM is 600 MB, with each sector storing 2048

bytes of data.

The data transfer rate is about 4800KB/sec. & the new access time is

around 80 milliseconds.

WORM-(WRITE ONCE READ MANY)

A user can only write data once.

The information is written on the disc using a laser beam.

It is possible to read the written data as many times as desired.

They keep lasting records of information but access time is high.

It is possible to rewrite updated or new data to another part of the disc.

Data that has already been written cannot be changed.

Usual size – 5.25 inch or 3.5 inch diameter.

The usual capacity of 5.25 inch disk is 650 MB,5.2GB etc.

DVDs

The term “DVD” stands for “Digital Versatile/Video Disc,” and there are

two sorts of DVDs:

DVDR (writable)

DVDRW (Re-Writable)

DVD-ROMS (Digital Versatile Discs): These are read-only memory

(ROM) discs that can be used in a variety of ways. When compared to

CD-ROMs, they can store a lot more data. It has a thick polycarbonate

plastic layer that serves as a foundation for the other layers. It’s an optical

memory that can read and write data.

DVD-R: DVD-R is a writable optical disc that can be used just once. It’s

a DVD that can be recorded. It’s a lot like WORM. DVD-ROMs have

capacities ranging from 4.7 to 17 GB. The capacity of 3.5 inch disk is 1.3

GB.

3. Cache Memory

It is a type of high-speed semiconductor memory that can help the CPU

run faster. Between the CPU and the main memory, it serves as a buffer.

It is used to store the data and programs that the CPU uses the most

frequently.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

112

Advantages of Cache Memory

It is faster than the main memory.

When compared to the main memory, it takes less time to access it.

It keeps the programs that can be run in a short amount of time.

It stores data in temporary use.

Disadvantages of Cache Memory

Because of the semiconductors used, it is very expensive.

The size of the cache (amount of data it can store) is usually small.

Self-Assessment Exercises 2

Fill in the gaps in the sentences below with the most suitable words:

1. ________ memory is non-volatile and stores information even when

power is off.

2. The three main types of computer memory are primary memory,

secondary memory, and ________ memory.

2. Memory expansion can be achieved by increasing the ________

width or increasing the number of ________.

4.0 CONCLUSION

A physical device that stores data or information temporarily or

permanently in it is called memory. It’s a device where data is stored and

processed. In common, a computer has primary and secondary memories.

Auxiliary (secondary) memory stores data and programs for long-term

storage or until the time a user wants to keep them in memory, while main

memory stores instructions and data during programme execution; hence,

any programme or file that is currently running or executing on a

computer is stored in primary memory.

5.0 SUMMARY

Computer memory is a crucial component of a computer system

responsible for storing and accessing data and instructions necessary for

processing tasks. It is broadly categorized into two types: volatile memory

(such as RAM) and non-volatile memory (such as ROM and storage

devices like SSDs and HDDs). Volatile memory, like RAM, temporarily

holds data and instructions that the CPU needs while performing tasks,

ensuring quick access and efficient processing. Non-volatile memory, on

the other hand, retains data even when the computer is powered off,

storing essential firmware, system software, and user data. The interplay

between these types of memory enables a computer to function

efficiently, balancing speed and storage capacity to handle various

computing tasks.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

113

6.0 Tutor marked assignment

1. What is memory?

2. List and briefly define the types of memory

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1. B

2. B

3. B

Self-Assessment Exercise 2

1. ROM

2. Cache

3. Word, addresses

7.0 References/ Further reading

Read, Jennifer (5 November 2020). "DDR5 Era To Officially Begin In

2021, With DRAM Market Currently Transitioning Between

Generations, Says TrendForce". EMSNow. Retrieved 2 November 2022.

Jump up to:a b Hemmendinger, David (February 15, 2016). "Computer

memory". Encyclopedia Britannica. Retrieved 16 October 2019.

A.M. Turing and R.A. Brooker (1952). Programmer's Handbook for

Manchester Electronic Computer Mark II Archived 2014-01-02 at

the Wayback Machine. University of Manchester.

"The MOS Memory Market" (PDF). Integrated Circuit Engineering

Corporation. Smithsonian Institution. 1997. Archived (PDF) from the

original on 2003-07-25. Retrieved 16 October 2019.

"MOS Memory Market Trends" (PDF). Integrated Circuit Engineering

Corporation. Smithsonian Institution. 1998. Archived (PDF) from the

original on 2019-10-16. Retrieved 16 October 2019.

https://en.wikipedia.org/wiki/Computer_memory#cite_ref-:1_2-1
https://web.archive.org/web/20140102231704/http:/www.alanturing.net/turing_archive/archive/m/m01/M01-005.html

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

114

UNIT 2 MEMORY HIERARCHY

1.0 INTRODUCTION

2.0 OBJECTIVES

3.0 MAIN CONTENT

3.1 Memory Hierarchy Design

3.2 Internal Processor Memories

3.3 Characteristics Terms for Various Memory Devices

4.0 CONCLUSION

5.0 SUMMARY

6.0 TUTOR MARKED ASSIGNMENT

7.0 REFERENCES/ FURTHER READING

1.0 INTRODUCTION

In the Computer System Design, memory hierarchy is an enhancement to

organize the memory such that it can minimize the access time. The

Memory Hierarchy was developed based on a program behavior known

as locality of references.

1.0 OBJECTIVES

At the end of this unit, you should be able to

- Memory hierarchy

- List and discuss levels of memory hierarchy

3.1 Memory Hierarchy Design

In computer architecture, the memory hierarchy separates computer

storage into a hierarchy based on response time. Since response time,

complexity, and capacity are related, the levels may also be distinguished

by their performance and control technologies. RAM (Random

Access Memory) is an internal memory device which temporarily holds

data and instructions while processing is happening. If the CPU is the

“brain” of the computer, then RAM is the “working memory” or

"thinking memory" used to store data just for the programs and

applications being used at that time.

A typical memory hierarchy starts with a small, expensive, and relatively

fast unit, called the cache, followed by a larger, less expensive, and

relatively slow main memory unit. Cache and main memory are built

using solid-state semiconductor material (typically CMOS transistors). It

is customary to call the fast memory level the primary memory. The solid-

state memory is followed by larger, less expensive, and far slower

magnetic memories that consist typically of the (hard) disk and the tape.

It is customary to call the disk the secondary memory, while the tape is

conventionally called the tertiary memory. The objective behind

designing a memory hierarchy is to have a memory system that performs

as if it consists entirely of the fastest unit and whose cost is dominated by

the cost of the slowest unit.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

115

In the Computer System Design, Memory Hierarchy is an enhancement

to organize the memory such that it can minimize the access time. The

Memory Hierarchy was developed based on a program behavior known

as locality of references. The figure below clearly demonstrates the

different levels of memory hierarchy :

This Memory Hierarchy Design is divided into 2 main types:

External Memory or Secondary Memory: Comprising Magnetic Disk,

Optical Disk, and Magnetic Tape i.e. peripheral storage devices which are

accessible by the processor via I/O Module.

Internal Memory or Primary Memory –Comprising of Main Memory,

Cache Memory & CPU registers. This is directly accessible by the

processor.

Thus, a memory system can be considered to consist of three groups of

memories. These are:

3.2 Internal Processor Memories

These consist of a small set of high-speed registers that are internal to a

processor and are used as temporary locations where actual processing is

done.

Primary Memory or Main Memory

It is a large memory which is fast but not as fast as internal processor

memory. This memory is accessed directly by the processor. It is mainly

based on integrated circuits (IC).

Secondary Memory/Auxiliary Memory/Backing Store:

Auxiliary memory is much larger than main memory but is slower than

main memory. It normally stores system programs (programs which are

used by system to perform various operational functions), other

instructions, programs and data files. Secondary memory can also he used

as an overflow memory in case the main memory capacity has been

exceeded. Secondary memories cannot be accessed directly by a

processor.

First the information of these memories is transferred to the main memory

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

116

and then the information can be accessed as the information of main

memory. There is another kind of memory which is increasingly being

used in modern computers, this is called Cache memory. It is logically

positioned between the internal memory (registers) and main memory. It

stores or catches some of the content of the main memory which is

currently in use of the processor. We will discuss about this memory in

greater details in a subsequent section of this unit.

3.3 Characteristics Terms for Various Memory Devices

The memory hierarchy can be characterized by a number of parameters.

Among these parameters are the access type, capacity, cycle time, latency,

bandwidth, and cost.

The term access: refers to the action that physically takes place during a

read or writes operation.

The capacity: of a memory level is usually measured in bytes.

The cycle time: is defined as the time elapsed from the start of a read

operation to the start of a subsequent read.

The latency: is defined as the time interval between the request for

information and the access to the first bit of that information.

The bandwidth: provides a measure of the number of bits per second that

can be accessed.

The cost: of a memory level is usually specified as dollars per megabytes.

Figure 1 depicts a typical memory hierarchy. Table 1 provides typical

values of the memory hierarchy parameters.

The term random access: refers to the fact that any access to any memory

location takes the same fixed amount of time regardless of the actual

memory location and/or the sequence of accesses that takes place. For

example, if a write operation to memory location 100 takes 15 ns and if

this operation is followed by a read operation to memory location 3000,

then the latter operation will also take 15 ns. This is to be compared to

sequential access in which if access to location 100 takes 500 ns, and if a

consecutive access to location 101 takes 505 ns, then it is expected that

an access to location 300 may take 1500 ns. This is because the memory

has to cycle through locations 100 to 300, with each location requiring 5

ns.

The effectiveness of a memory hierarchy depends on the principle of

moving information into the fast memory infrequently and accessing it

many times before replacing it with new information. This principle is

possible due to a phenomenon called locality of reference; that is, within

a given period of time, programs tend to reference a relatively confined

area of memory repeatedly. There exist two forms of locality: spatial and

temporal locality.

RAM and ROM architecture.

Read-only memory, or ROM, is a form of data storage in computers and

other electronic devices that cannot be easily altered or reprogrammed.

RAM is referred to as volatile memory and is lost when the power is

turned off whereas ROM in non-volatile and the contents are retained

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

117

even after the power is switched off.

Types of ROM: Semiconductor-Based

Classic mask-programmed ROM chips are integrated circuits that

physically encode the data to be stored, and thus it is impossible to change

their contents after fabrication. Other types of non-volatile solid-state

memory permit some degree of modification:

Programmable read-only memory (PROM), or one-time programmable

ROM (OTP), can be written to or programmed via a special device called

a PROM programmer. Typically, this device uses high voltages to

permanently destroy or create internal links (fuses or antifuses) within

the chip. Consequently, a PROM can only be programmed once.

Erasable programmable read-only memory (EPROM) can be erased by

exposure to strong ultraviolet light (typically for 10 minutes or longer),

then rewritten with a process that again needs higher than usual voltage

applied. Repeated exposure to UV light will eventually wear out an

EPROM, but the endurance of most EPROM chips exceeds 1000 cycles

of erasing and reprogramming. EPROM chip packages can often be

identified by the prominent quartz "window" which allows UV light to

enter. After programming, the window is typically covered with a label to

prevent accidental erasure. Some EPROM chips are factory-erased before

they are packaged, and include no window; these are effectively PROM.

Electrically erasable programmable read-only memory (EEPROM) is

based on a similar semiconductor structure to EPROM, but allows its

entire contents (or selected banks) to be electrically erased, then

rewritten electrically, so that they need not be removed from the

computer (whether general-purpose or an embedded computer in a

camera, MP3 player, etc.). Writing or flashing an EEPROM is much

slower (milliseconds per bit) than reading from a ROM or writing to a

RAM (nanoseconds in both cases).

Electrically alterable read-only memory (EAROM) is a type of EEPROM

that can be modified one bit at a time. Writing is a very slow process and

again needs higher voltage (usually around 12 V) than is used for read

access. EAROMs are intended for applications that require infrequent and

only partial rewriting. EAROM may be used as non-volatile storage for

critical system setup information; in many applications, EAROM has

been supplanted by CMOS RAM supplied by mains power and backed-

up with a lithium battery.

Flash memory (or simply flash) is a modern type of EEPROM invented

in 1984. Flash memory can be erased and rewritten faster than ordinary

EEPROM, and newer designs feature very high endurance (exceeding

1,000,000 cycles). Modern NAND flash makes efficient use of silicon

chip area, resulting in individual ICs with a capacity as high as 32 GB as

of 2007; this feature, along with its endurance and physical durability, has

allowed NAND flash to replace magnetic in some applications (such as

USB flash drives). Flash memory is sometimes called flash ROM or flash

EEPROM when used as a replacement for older ROM types, but not in

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

118

applications that take advantage of its ability to be modified quickly and

frequently.

Random-access memory, or RAM, is a form of data storage that can be

accessed randomly at any time, in any order and from any physical

location in contrast to other storage devices, such as hard drives, where

the physical location

of the data determines the time taken to retrieve it. RAM is measured in

megabytes and the speed is measured in nanoseconds and RAM chips can

read data faster than ROM.

Types of RAM: The two widely used forms of modern RAM are static

RAM (SRAM) and dynamic RAM (DRAM). In SRAM, a bit of data is

stored using the state of a six transistor memory cell. This form of RAM

is more expensive to produce, but is generally faster and requires less

dynamic power than DRAM. In modern computers, SRAM is often

used as cache memory for the CPU. DRAM stores a bit of data using a

transistor and capacitor pair, which together comprise a DRAM cell.

The capacitor holds a high or low charge (1 or 0, respectively), and the

transistor acts as a switch that lets the control circuitry on the chip read

the capacitor's state of charge or change it. As this form of memory is

less expensive to produce than static RAM, it is the predominant form

of computer memory used in modern computers. The figure below shows

DRAM & SRAM resp.

Both static and dynamic RAM are considered volatile, as their state is lost

or reset when power is removed from the system. By contrast, read-only

memory (ROM) stores data by permanently enabling or disabling selected

transistors, such that the memory cannot be altered. Writeable variants of

ROM (such as EEPROM and flash memory) share properties of both

ROM and RAM, enabling data to persist without power and to be updated

without requiring special equipment. These persistent forms of

semiconductor ROM include USB flash drives, memory cards for

cameras and portable devices, and solid-state drives. ECC memory

(which can be either SRAM or DRAM) includes special circuitry to detect

and/or correct random faults (memory errors) in the stored data, using

parity bits or error correction codes.

In general, the term RAM refers solely to solid-state memory devices

(either DRAM or SRAM), and more specifically the main memory in

most computers. In optical storage, the term DVD-RAM is somewhat of

a misnomer since, unlike CD- RW or DVD-RW it does not need to be

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

119

erased before reuse. Nevertheless, a DVD- RAM behaves much like a

hard disc drive if somewhat slower.

Difference between Static Ram And Dynamic Ram

Requirements of Memory Management System

Memory management keeps track of the status of each memory location,

whether it is allocated or free. It allocates the memory dynamically to the

programs at their request and frees it for reuse when it is no longer needed.

Memory management meant to satisfy some requirements that we should

keep in mind.

These Requirements of memory management are:

Relocation – The available memory is generally shared among a number

of processes in a multiprogramming system, so it is not possible to know

in advance which other programs will be resident in main memory at the

time of execution of his program. Swapping the active processes in and

out of the main memory enables the operating system to have a larger

pool of ready-to-execute process.

When a program gets swapped out to disk memory, then it is not always

possible that when it is swapped back into main memory it occupies the

previous memory location, since the location may still be occupied by

another process. We may need to relocate the process to a different area

of memory. Thus there is a possibility that program may be moved in

main memory due to swapping.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

120

The figure depicts a process image. The process image occupies a

continuous region of the main memory. The operating system will need

to know many things including the location of process control

information, the execution stack, and the code entry. Within a program,

there are memory references in various instructions and these are called

logical addresses.

After loading the program into main memory, the processor and the

operating system must be able to translate logical addresses into physical

addresses. Branch instructions contain the address of the next instruction

to be executed. Data reference instructions contain the address of the byte

or word of data referenced.

Protection – There is always a danger when we have multiple programs

at the same time as one program may write to the address space of another

program. So every process must be protected against unwanted

interference when other process tries to write in a process whether

accidental or incidental. Between relocation and protection requirements

a trade-off occurs as the satisfaction of

relocation requirement increases the difficulty of satisfying the protection

requirement.

Prediction of the location of a program in main memory is not possible,

that’s why it is impossible to check the absolute address at compile time

to assure protection. Most of the programming language allows the

dynamic calculation of address at run time. The memory protection

requirement must be satisfied by the processor rather than the operating

system because the operating system can hardly control a process when it

occupies the processor. Thus it is possible to check the validity of memory

references.

Sharing – A protection mechanism must have to allow several processes

to access the same portion of main memory. Allowing each processes

access to the same copy of the program rather than have their own

separate copy has an advantage.

For example, multiple processes may use the same system file and it

is natural to load one copy of the file in main memory and let it shared by

those processes. It is the task of Memory management to allow

controlled access to the shared areas of memory without compromising

the protection. Mechanisms are used to support relocation supported

sharing capabilities.

Logical organization – Main memory is organized as linear or it can be a

one- dimensional address space which consists of a sequence of bytes

or words. Most of the programs can be organized into modules, some of

those are unmodifiable (read-only, execute only) and some of those

contain data that can be modified. To effectively deal with a user program,

the operating system and computer hardware must support a basic module

to provide the required protection and sharing. It has

the following advantages:

Modules are written and compiled independently and all the references

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

121

from one module to another module are resolved by `the system at run

time.

Different modules are provided with different degrees of protection.

There are mechanisms by which modules can be shared among processes.

Sharing can be provided on a module level that lets the user specify the

sharing that is desired.

Physical organization – The structure of computer memory has two levels

referred to as main memory and secondary memory. Main memory is

relatively very fast and costly as compared to the secondary memory.

Main memory is volatile. Thus secondary memory is provided for storage

of data on a long-term basis while the main memory holds currently used

programs. The major system concern between main memory and

secondary memory is the flow of information and it is impractical for

programmers to understand this for two reasons:

The programmer may engage in a practice known as overlaying when the

main memory available for a program and its data may be insufficient. It

allows different modules to be assigned to the same region of memory.

One disadvantage is that it is time-consuming for the programmer.

In a multiprogramming environment, the programmer does not know how

much space will be available at the time of coding and where that space

will be located inside the memory.

Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. What is the primary purpose of memory hierarchy?

 A. To increase memory capacity

 B. To minimize access time while managing cost

 C. To improve data security

 D. To reduce power consumption

2. Which memory level is fastest but most expensive?

 A. Secondary memory

 B. Main memory

 C. Cache memory

 D. Virtual memory

3. What principle makes memory hierarchy effective?

 A. Locality of reference

 B. Random access patterns

 C. Sequential processing

 D. Parallel execution

4.0 CONCLUSION

The computer memory can be divided into 5 major hierarchies that are

based on use as well as speed. A processor can easily move from any one

level to some other on the basis of its requirements. These five hierarchies

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

122

in a system’s memory are register, cache memory, main memory,

magnetic disc, and magnetic tape.

5.0 SUMMARY

The memory hierarchy in computer systems is a structured arrangement

of various types of memory based on speed, cost, and size, designed to

optimize performance and efficiency. At the top of the hierarchy are the

fastest and most expensive memory types, such as CPU registers and

cache, which provide quick access to frequently used data. Below these

are main memory, or RAM, which is slower and less costly but has higher

capacity. Further down are secondary storage devices like SSDs and

HDDs, which offer large storage capacities at lower speeds and costs. At

the bottom, tertiary storage includes external drives and cloud storage,

used for long-term data retention with the slowest access speeds. This

hierarchical arrangement ensures that the most critical data is accessed

rapidly while providing cost-effective solutions for large-scale data

storage needs.

6.0 Tutor marked assignment

1. What do you mean by Memory Hierarchy?

2. Explain the types of Memory Hierarchy

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1. B

2. C

3. A

7.0 References/ Further reading

Przybylski, S. A. (1990). Cache and memory hierarchy design: a

performance directed approach. Morgan Kaufmann.

Milenkovic, A., Milenkovic, M., & Barnes, N. (2003, March). A

performance evaluation of memory hierarchy in embedded systems.

In Proceedings of the 35th Southeastern Symposium on System Theory,

2003. (pp. 427-431). IEEE.

Przybylski, S. A. (1988). Performance directed memory hierarchy design.

Stanford University.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

123

UNIT 3 VIRTUAL MEMORY

1.0 Introduction

2.0 Objectives

3.0 Main content

3.1 Virtual Memory

3.2 Types of virtual memory

3.3 Mapping in Pages

1.0 Introduction

Virtual Memory is a storage allocation scheme in which secondary

memory can be addressed as though it were part of the main memory. The

addresses a program may use to reference memory are distinguished from

the addresses the memory system uses to identify physical storage sites

and program-generated addresses are translated automatically to the

corresponding machine addresses. A memory hierarchy, consisting of a

computer system’s memory and a disk, that enables a process to operate

with only some portions of its address space in memory. A virtual

memory is what its name indicates- it is an illusion of a memory that is

larger than the real memory. We refer to the software component of

virtual memory as a virtual memory manager. The basis of virtual

memory is the noncontiguous memory allocation model. The virtual

memory manager removes some components from memory to make room

for other components. The size of virtual storage is limited by the

addressing scheme of the computer system and the amount of secondary

memory available not by the actual number of main storage locations.

2.0 objectives

At the end of this unit, you should be able to

Discuss the concept of virtual memory and

Discuss the various implementations of virtual memory.

 The objectives of this module are to

Discuss the concept of virtual memory and

Discuss the various implementations of virtual memory.

3.1 The Virtual Memory

All of us are aware of the fact that our program needs to be available in

main memory for the processor to execute it. Assume that your computer

has something like 32 or 64 MB RAM available for the CPU to use.

Unfortunately, that amount of RAM is not enough to run all of the

programs that most users expect to run at once. For example, if you load

the operating system, an e-mail program, a Web browser and word

processor into RAM simultaneously, 32 MB is not enough to hold all of

them. If there were no such thing as virtual memory, then you will not be

able to run your programs, unless some program is closed. With virtual

memory, we do not view the program as one single piece. We divide it

into pieces, and only the one part that is currently being referenced by the

processor need to be available in main memory. The entire program is

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

124

available in the hard disk. As the copying between the hard disk and main

memory happens automatically, you don’t even know it is happening, and

it makes your computer feel like is has unlimited RAM space even though

it only has 32 MB installed. Because hard disk space is so much cheaper

than RAM chips, it also has an economic benefit.

 Techniques that automatically move program and data blocks into the

physical main memory when they are required for execution are

called virtual memory techniques. Programs, and hence the processor,

reference an instruction and data space that is independent of the available

physical main memory space. The binary addresses that the processor

issues for either instructions or data are called virtual or logical

addresses. These addresses are translated into physical addresses by a

combination of hardware and software components. If a virtual address

refers to a part of the program or data space that is currently in the physical

memory, then the contents of the appropriate location in the main memory

are accessed immediately.

On the other hand, if the referenced address is not in the main memory,

its contents must be brought into a suitable location in the memory before

they can be used. Therefore, an address used by a programmer will be

called a virtual address, and the set of such addresses the address

space. An address in main memory is called a location or physical

address. The set of such locations is called the memory space, which

consists of the actual main memory locations directly addressable for

processing. As an example, consider a computer with a main-memory

capacity of 32M words. Twenty-five bits are needed to specify a physical

address in memory since 32 M = 225. Suppose that the computer

has available auxiliary memory for storing 235, that is, 32G words. Thus,

the auxiliary memory has a capacity for storing information equivalent to

the capacity of 1024 main memories. Denoting the address space by N

and the memory space by M, we then have for this example N = 32 Giga

words and M = 32 Mega words.

 The portion of the program that is shifted between main memory and

secondary storage can be of fixed size (pages) or of variable size

(segments). Virtual memory also permits a program’s memory to be

physically noncontiguous , so that every portion can be allocated

wherever space is available. This facilitates process relocation. Virtual

memory, apart from overcoming the main memory size limitation, allows

sharing of main memory among processes. Thus, the virtual memory

model provides decoupling of addresses used by the program (virtual) and

the memory addresses (physical). Therefore, the definition of virtual

memory can be stated as, “ The conceptual separation of user logical

memory from physical memory in order to have large virtual memory on

a small physical memory”. It gives an illusion of infinite storage, though

the memory size is limited to the size of the virtual address.

Even though the programs generate virtual addresses, these addresses

cannot be used to access the physical memory. Therefore, the virtual to

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

125

physical address translation has to be done. This is done by the memory

management unit (MMU). The mapping is a dynamic operation, which

means that every address is translated immediately as a word is referenced

by the CPU. This concept is depicted diagrammatically in Figures 20 and

21. Figure 20 gives a general overview of the mapping between the logical

addresses and physical addresses. Figure 21 shows how four different

pages A, B, C and D are mapped. Note that, even though they are

contiguous pages in the virtual space, they are not so in the physical space.

Pages A, B and C are available in physical memory at non-contiguous

locations, whereas, page D is not available in physical storage.

Figure 20. Overview of the mapping between logical and physical

addresses

Figure 21. Four various mapping pages

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

126

3.2 Types of Virtual Memory

Address mapping using Paging: The address mapping is simplified if the

information in the address space and the memory space are each divided

into groups of fixed size. The physical memory is broken down into

groups of equal size called page frames and the logical memory is divided

into pages of the same size. The programs are also considered to be split

into pages. Pages commonly range from 2K to 16K bytes in length. They

constitute the basic unit of information that is moved between the main

memory and the disk whenever the translation mechanism determines that

a move is required. Pages should not be too small, because the access time

of a magnetic disk is much longer than the access time of the main

memory. The reason for this is that it takes a considerable amount of time

to locate the data on the disk, but once located, the data can be transferred

at a rate of several megabytes per second. On the other hand, if pages are

too large it is possible that a substantial portion of a page may not be used,

yet this unnecessary data will occupy valuable space in the main memory.

If you consider a computer with an address space of 1M and a memory

space of 64K, and if you split each into groups of 2K words, you will

obtain 29 (512) pages and thirty-two page frames. At any given time, up

to thirty-two pages of address space may reside in main memory in

anyone of the thirty-two blocks.

In order to do the mapping, the virtual address is represented by two

numbers: a page number and an offset or line address within the page. In

a computer with 2 p words per page, p bits are used to specify an offset

and the remaining high-order bits of the virtual address specify the page

number. In the example above, we considered a virtual address of 20 bits.

Since each page consists of 211 = 2K words, the high order nine bits of

the virtual address will specify one of the 512 pages and the low-order 11

bits give the offset within the page. Note that the line address in address

space and memory space is the same; the only mapping required is from

a page number to a block number.

 The mapping information between the pages and the page frames is

available in a page table. The page table consists of as many pages that a

virtual address can support. The base address of the page table is stored

in a register called the Page Table Base Register (PTBR). Each process

can have one or more of its own page tables and the operating system

switches from one page table to another on a context switch, by loading a

different address into the PTBR. The page number, which is part of the

virtual address, is used to index into the appropriate page table entry. The

page table entry contains the physical page frame address, if the page is

available in main memory. Otherwise, it specifies wherein secondary

storage, the page is available. This generates a page fault and the operating

system brings the requested page from secondary storage to main storage.

Along with this address information, the page table entry also provides

information about the privilege level associated with the page and the

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

127

access rights of the page. This helps in p roviding protection to the page.

The mapping process is indicated in Figure 22. Figure 23 shows a typical

page table entry. The dirty or modified bit indicates whether the page was

modified during the cache residency period.

Figure 22. The Mapping Process

Figure 23. Example of Page Table entry

M – indicates whether the page has been written (dirty)

R – indicates whether the page has been referenced (useful for

replacement)

V – Valid bit

Protection bits – indicate what operations are allowed on this page

Page Frame Number says where in memory is the page

A virtual memory system is thus a combination of hardware and software

tech-niques. The memory management software system handles all the

software operations for the efficient utilization of memory space. It must

decide the answers to the usual four questions in a hierarchical memory

system:

Q1: Where can a block be placed in the upper level?

Q2: How is a block found if it is in the upper level?

Q3: Which block should be replaced on a miss?

Q4: What happens on a write?

The hardware mapping mechanism and the memory management

software together constitute the architecture of a virtual memory and

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

128

answer all these questions .

Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. What is the main purpose of virtual memory?

 A. To increase processing speed

 B. To provide the illusion of larger memory than physically available

 C. To improve data security

 D. To reduce power consumption

2. What unit is used to transfer data between main memory and secondary

storage in virtual memory systems?

 A. Bytes

 B. Words

 C. Pages

 D. Sectors

3. What happens when a program references a page not in main memory?

 A. System crash

 B. Page fault

 C. Memory overflow

 D. Cache miss

When a program starts execution, one or more pages are transferred into

main memory and the page table is set to indicate their position. Thus, the

page table entries help in identifying a page. The program is executed

from main memory until it attempts to reference a page that is still in

auxiliary memory. This condition is called a page fault. When a page fault

occurs, the execution of the present program is suspended until the

required page is brought into main memory. Since loading a page from

auxiliary memory to main memory is basically an I/O operation, the

operating system assigns this task to the I/O processor. In the meantime,

control is transferred to the next program in memory that is waiting to be

processed in the CPU. Later, when the memory block has been assigned

and the transfer completed, the original program can resume its operation.

It should be noted that it is always a write back policy that is adopted,

because of the long access times associated with the disk access.

Also, when a page fault is serviced, the memory may already be full. In

this case, as we discussed for caches, a replacement has to be done. The

replacement policies are again FIFO and LRU. The FIFO replacement

policy has the advantage of being easy to implement. !t has the

disadvantage that under certain circumstances pages are removed and

loaded from memory too frequently. The LRU policy is more difficult to

implement but has been more attractive on the assumption that the least

recently used page is a better candidate for removal than the least recently

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

129

loaded page as in FIFO. The LRU algorithm can be implemented by

associating a counter with every page that is in main memory. When a

page is referenced, its associated counter is set to zero. At fixed intervals

of time, the counters associated with all pages presently in memory are

incremented by 1. The least recently used page is the page with the highest

count. The counters are often called aging registers, as their count

indicates their age, that is, how long ago their associated pages have been

referenced.

Drawback of Virtual memory: So far we have assumed that the page

tables are stored in memory. Since, the page table information is used by

the MMU, which does the virtual to physical address translation, for every

read and write access, every memory access by a program can take at least

twice as long: one memory access to obtain the physical address and a

second access to get the data. So, ideally, the page table should be situated

within the MMU. Unfortunately, the page table may be rather large, and

since the MMU is normally implemented as part of the processor chip, it

is impossible to include a complete page table on this chip. Therefore, the

page table is kept in the main memory. However, a copy of a small portion

of the page table can be accommodated within the MMU. This portion

consists of the page table entries that correspond to the most recently

accessed pages. A small cache, usually called the Translation Lookaside

Buffer (TLB) is incorporated into the MMU for this purpose. The TLB

stores the most recent logical to physical address translations. The

operation of the TLB with respect to the page table in the main memory

is essentially the same as the operation we have discussed in conjunction

with the cache memory.

An essential requirement is that the contents of the TLB be coherent with

the contents of page tables in the memory. When the operating system

changes the contents of page tables, it must simultaneously invalidate the

corresponding entries in the TLB. The valid bit in the TLB is provided for

this purpose. When an entry is invalidated, the TLB will acquire the new

information as part of the MMU’s normal response to access misses.

With the introduction of the TLB, the address translation proceeds as

follows. Given a virtual address, the MMU looks in the TLB for the

referenced page. If the page table entry for this page is found in the TLB,

the physical address is obtained immediately. If there is a miss in the TLB,

then the required entry is obtained from the page table in the main

memory and the TLB is updated.

 Recall that the caches need a physical address, unless we use virtual

caches. As discussed with respect to cache optimizations, machines with

TLBs go one step further to reduce the number of cycles/cache access.

They overlap the cache access with the TLB access. That is, the high order

bits of the virtual address are used to look in the TLB while the low order

bits are used as index into the cache. The flow is as shown below.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

130

 The overlapped access only works as long as the address bits used to

index into the cache do not change as the result of VA translation. This

usually limits things to small caches, large page sizes, or high n-way set

associative caches if you want a large cache.

Advantages of Virtual Memory

More processes may be maintained in the main memory: Because we

are going to load only some of the pages of any particular process, there

is room for more processes. This leads to more efficient utilization of the

processor because it is more likely that at least one of the more numerous

processes will be in the ready state at any particular time.

A process may be larger than all of the main memory: One of the most

fundamental restrictions in programming is lifted. A process larger than

the main memory can be executed because of demand paging. The OS

itself loads pages of a process in the main memory as required.

It allows greater multiprogramming levels by using less of the available

(primary) memory for each process.

It has twice the capacity for addresses as main memory.

It makes it possible to run more applications at once.

Users are spared from having to add memory modules when RAM space

runs out, and applications are liberated from shared memory management.

When only a portion of a program is required for execution, speed has

increased.

Memory isolation has increased security.

It makes it possible for several larger applications to run at once.

Memory allocation is comparatively cheap.

It doesn’t require outside fragmentation.

It is efficient to manage logical partition workloads using the CPU.

Automatic data movement is possible.

Disadvantages of Virtual Memory

It can slow down the system performance, as data needs to be constantly

transferred between the physical memory and the hard disk.

It can increase the risk of data loss or corruption, as data can be lost if the

hard disk fails or if there is a power outage while data is being transferred

https://www.geeksforgeeks.org/different-types-ram-random-access-memory/

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

131

to or from the hard disk.

It can increase the complexity of the memory management system, as the

operating system needs to manage both physical and virtual memory.

Self-Assessment Exercises 2

Fill in the gaps in the sentences below with the most suitable words:

1. The ________ management unit (MMU) performs virtual to physical

address translation.

2. Virtual memory allows ________ allocation of memory and supports

sharing of main memory among processes.

3. The ________ policy determines which page to remove when

memory is full.

4.0 Conclusion

In the ever-evolving world of computer science, the concept of virtual

memory has become increasingly important for both computer

architecture and organisation. This in-depth guide will provide an

overview of what virtual memory is, along with its benefits and

drawbacks. Delving into the role of virtual memory in the overall

structure of computer systems, you will gain an understanding of how it

interacts with primary memory and enhances system performance.

Furthermore, the discussion will encompass topics such as the purpose

and functionality of virtual memory, its role in memory management and

allocation, as well as addressing common issues and challenges

associated with its implementation. So, let's embark on a journey through

the fascinating realm of virtual memory and uncover its implications for

modern computer science.

5.0 Summary

To summarize, we have looked at the need for the concept of virtual

memory. Virtual memory is a concept implemented using hardware and

software. The restriction placed on the program size is not based on the

RAM size but based on the virtual memory size. There are three different

ways of implementing virtual memory. The MMU does the logical to

physical address translation. Paging uses fixed-size pages to move

between main memory and secondary storage. Paging uses page tables to

map the logical addresses to physical addresses. Thus, virtual memory

helps in dynamic allocation of the required data, sharing of data, and

providing protection. The TLB is used to store the most recent logical to

physical address translations.

6.0 Tutor Marked Assignment

1. What are the differences among various mapping

2. What is a virtual memory?

3. State five (5) advantages of virtual memory.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

132

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1. B

2. C

3. B

Self-Assessment Exercise 2

1. Memory

2. Dynamic

3. Replacement

7.0 References/Further reading

Adamck, J. Foundation of coding New York Wiley 1991

Smith,a CACHE MEMORIES ACM computing surveys September 1992

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

133

UNIT 4 CACHE MEMORY

1.0 INTRODUCTION

2.0 OBJECTIVES

3.0 MAIN CONTEXT

3.1 CACHE MEMORY PRINCIPLES

3.2 ELEMENTS OF CACHE DESIGN

3.3 PENTIUM 4 CACHE ORGANIZATION

3.4 ARM CACHE ORGANIZATION

4.0 CONCLUSION

5.0 SUMMARY

6.0 TUTOR MARKED ASSIGNMENT

7.0 REFERENCES AND FURTHER READING

1.0 Introduction

A small but fast cache memory, in which the contents of the most

commonly accessed locations are maintained, can be placed between the

main memory and the CPU. When a program executes, the cache memory

is searched first, and the referenced word is accessed in the cache if the

word is present. If the referenced word is not in the cache, then a free

location is created in the cache, and the referenced word is brought into

the cache from the main memory. In general most future access to main

memory by the processor will likely be to locations recently accessed. So

the cache memory automatically retains a copy of some of the recently

used words from the dynamic random-access memory (DRAM)

2.0 Objectives

At the end of this unit, you should be able to

- Explain the principles and elements of cache design\understood

Pentium 4 cache organization

- Discuss ARM cache organization

3.1 Cache memory principles

3.2 Replacement Policies in Associative Mapped Caches

3.3 Cache Performance

3.0 MAIN CONTENTS

3.1 Cache Principle

Cache Memory is a special very high-speed memory. The cache is a

smaller and faster memory that stores copies of the data from frequently

used main memory locations. There are various different independent

caches in a CPU, which store instructions and data. The most important

use of cache memory is that it is used to reduce the average time to access

data from the main memory. The data or contents of the main memory

that are used frequently by CPU are stored in the cache memory so that

the processor can easily access that data in a shorter time. Whenever the

CPU needs to access memory, it first checks the cache memory. If the

data is not found in cache memory, then the CPU moves into the main

memory. Cache memory is placed between the CPU and the main

memory.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

134

Characteristics of Cache Memory

Cache memory is an extremely fast memory type that acts as a buffer

between RAM and the CPU.

Cache Memory holds frequently requested data and instructions so that

they are immediately available to the CPU when needed.

Cache memory is costlier than main memory or disk memory but more

economical than CPU registers.

Cache Memory is used to speed up and synchronize with a high-speed

CPU.

Levels of Memory

Level 1 or Register: It is a type of memory in which data is stored and

accepted that are immediately stored in the CPU. The most commonly

used register is Accumulator, Program counter, Address Register, etc.

Level 2 or Cache memory: It is the fastest memory that has faster access

time where data is temporarily stored for faster access.

Level 3 or Main Memory: It is the memory on which the computer works

currently. It is small in size and once power is off data no longer stays in

this memory.

Level 4 or Secondary Memory: It is external memory that is not as fast as

the main memory but data stays permanently in this memory.

The speed of the main memory is very low in comparison with the speed

of modern processors. For good performance, the processor cannot spend

much of its time waiting to access instructions and data in main memory.

Hence, it is important to devise a scheme that reduces the time needed to

access the necessary information. Since the speed of the main memory

unit is limited by electronic and packaging constraints, the solution must

be sought in a different architectural arrangement. An efficient solution is

to use a fast cache memory, which essentially makes the main memory

appear to the processor to be faster than it is. The cache is a smaller, faster

memory which stores copies of the data from the most frequently used

main memory locations. As long as most memory accesses are to cached

memory locations, the average latency of memory accesses will be closer

to the cache latency than to the latency of main memory.

 The effectiveness of the cache mechanism is based on a property of

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

135

computer programs called locality of reference. Analysis of programs

shows that most of their execution time is spent on routines in which many

instructions are executed repeatedly. These instructions may constitute a

simple loop, nested loops, or a few procedures that repeatedly call each

other. The actual detailed pattern of instruction sequencing is not

important – the point is that many instructions in localized areas of the

program are executed repeatedly during some time, and the remainder of

the program is accessed relatively infrequently. This is referred to as the

locality of reference. It manifests itself in two ways: temporal and spatial.

The first means that a recently executed instruction is likely to be executed

again very soon. The spatial aspect means that instructions in close

proximity to a recently executed instruction (with respect to the

instructions’ addresses) are also likely to be executed soon.

 If the active segments of a program can be placed in a fast cache memory,

then the total execution time can be reduced significantly. Conceptually,

operation of a cache memory is very simple. The memory control

circuitry is designed to take advantage of the property of locality of

reference. The temporal aspect of the locality of reference suggests that

whenever an information item (instruction or data) is first needed,

this item should be brought into the cache where it will hopefully remain

until it is needed again. The spatial aspect suggests that instead of fetching

just one item from the main memory to the cache, it is useful to fetch

several items that reside at adjacent addresses as well. We will use the

term block to refer to a set of contiguous address locations of some size.

Another term that is often used to refer to a cache block is cache line.

 The cache memory that is included in the memory hierarchy can

be split or unified/dual. A split cache is one where we have a separate data

cache and a separate instruction cache. Here, the two caches work in

parallel, one transferring data and the other transferring instructions. A

dual or unified cache is wherein the data and the instructions are stored in

the same cache. A combined cache with a total size equal to the sum of

the two split caches will usually have a better hit rate. This higher rate

occurs because the combined cache does not rigidly divide the number of

entries that may be used by instructions from those that may be used by

data. Nonetheless, many processors use a split instruction and data cache

to increase cache bandwidth.

 When a Read request is received from the processor, the contents of a

block of memory words containing the location specified are transferred

into the cache. Subsequently, when the program references any of the

locations in this block, the desired contents are read directly from the

cache. Usually, the cache memory can store a reasonable number of

blocks at any given time, but this number is small compared to the total

number of blocks in the main memory. The correspondence between the

main memory blocks and those in the cache is specified by a mapping

function. When the cache is full and a memory word (instruction or data)

that is not in the cache is referenced, the cache control hardware must

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

136

decide which block should be removed to create space for the new block

that contains the referenced word. The collection of rules for making this

decision constitutes the replacement algorithm.

 Therefore, the three main issues to be handled in cache memory are

 Cache placement – where do you place a block in the cache?

 Cache identification – how do you identify whether the requested

information is available in the cache or not?

 Cache replacement – which block will be replaced in the cache, making

way for an incoming block?

These questions are answered and explained with an example main

memory size of 1MB (the main memory address is 20 bits), a cache

memory of size 2KB and a block size of 64 bytes. Since the block size is

64 bytes, you can immediately identify that the main memory has 214

blocks and the cache has 25 blocks. That is, the 16K blocks of main

memory have to be mapped to the 32 blocks of cache. There are three

different mapping policies – direct mapping, fully associative mapping

and n-way set associative mapping that are used.

The word is then accessed in the cache. Although this process takes longer

than accessing main memory directly, the overall performance can be

improved if a high proportion of memory accesses are satisfied by the

cache. Modern memory systems may have several levels of cache,

referred to as Level 1 (L1), Level 2 (L2), and even, in some cases, Level

3 (L3). In most instances the

L1 cache is implemented right on the CPU chip. Both the Intel Pentium

and the IBM-Motorola PowerPC G3 processors have 32 Kbytes of L1

cache on the CPU chip.

A cache memory is faster than main memory for a number of reasons.

Faster electronics can be used, which also results in a greater expense in

terms of money, size, and power requirements. Since the cache is small,

this increase in cost is relatively small. A cache memory has fewer

locations than a main memory, and as a result it has a shallow decoding

tree, which reduces the access time.

The cache is placed both physically closer and logically closer to the CPU

than the main memory, and this placement avoids communication delays

over a shared bus. A typical situation is shown in Figure 24. A simple

computer without a cache memory is shown in the left side of the figure.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

137

Figure 24: Placement of Cache in a Computer System

This cache-less computer contains a CPU that has a clock speed of 400

MHz, but communicates over a 66 MHz bus to a main memory that

supports a lower clock speed of 10 MHz. A few bus cycles are normally

needed to synchronize the CPU with the bus, and thus the difference in

speed between main memory and the CPU can be as large as a factor of

ten or more. A cache memory can be positioned closer to the CPU as

shown in the right side of Figure 2, so that the CPU sees fast accesses over

a 400 MHz direct path to the cache.

3.2 Replacement Policies in Associative Mapped Caches

When a new block needs to be placed in an associative mapped cache, an

available slot must be identified. If there are unused slots, such as when a

program begins execution, then the first slot with a valid bit of 0 can

simply be used.

When all of the valid bits for all cache slots are 1, however, then one of

the active slots must be freed for the new block. Four replacement policies

that are commonly used are: least recently used (LRU), first-in first-out

(FIFO), least frequently used (LFU), and random. A fifth policy that is

used for analysis purposes only, is optimal.

For the LRU policy, a time stamp is added to each slot, which is updated

when any slot is accessed. When a slot must be freed for a new block, the

contents of the least recently used slot, as identified by the age of the

corresponding time stamp, are discarded and the new block is written to

that slot. The LFU policy works similarly, except that only one slot is

updated at a time by incrementing a frequency counter that is attached to

each slot. When a slot is needed for a new block, the least frequently used

slot is freed.

The FIFO policy replaces slots in round-robin fashion, one after the next

in the order of their physical locations in the cache. The random

replacement policy simply chooses a slot at random. The optimal

replacement policy is not practical, but is used for comparison purposes

to determine how effective other replacement policies are to the best

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

138

possible.

That is, the optimal replacement policy is determined only after a program

has already executed, and so it is of little help to a running program.

Studies have shown that the LFU policy is only slightly better than the

random policy. The LRU policy can be implemented efficiently, and is

sometimes preferred over the others for that reason.

Advantages and Disadvantages of the Associative Mapped Cache

The associative mapped cache has the advantage that any main memory

block can be placed into any cache slot. This means that regardless of how

irregular the data and program references are, if a slot is available for the

block, it can be stored in the cache. This results in considerable hardware

overhead needed for cache bookkeeping. Each slot must have a 27-bit tag

that identifies its location in main memory, and each tag must be searched

in parallel. This means that in the example above the tag memory must be

27 x 214 bits in size, and as described above, there must be a mechanism

for searching the tag memory in parallel. Memories that can be searched

for their contents, in parallel, are referred to as associative, or content-

addressable memories. By restricting where each main memory block can

be placed in the cache, we can eliminate the need for an associative

memory. This kind of cache is referred to as a direct mapped cache, which

is discussed in the next section.

Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. What is the primary purpose of cache memory?

 A. To store large amounts of data permanently

 B. To provide faster access to frequently used data

 C. To backup important files

 D. To connect to external devices

2. Which replacement policy removes the least recently used item?

 A. FIFO

 B. LRU

 C. Random

 D. Optimal

3. What are the two forms of locality of reference?

 A. Spatial and temporal

 B. Physical and logical

 C. Static and dynamic

 D. Sequential and random

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

139

Direct Mapped Cache

Figure 24 shows a direct mapping scheme for a 232 word memory. As

before, the memory is divided into 227 blocks of 25 = 32 words per block,

and the cache consists of 214 slots. There are more main memory blocks

than there are cache slots, and a total of 227/214 = 213 main memory

blocks can be mapped onto each cache slot. In order to keep track of

which of the 213 possible blocks is in each slot, a 13-bit tag field is added

to each slot which holds an identifier in the range from 0 to 213 – 1.

Figure 24: A Direct Mapping Scheme for Cache Memory

This scheme is called “direct mapping” because each cache slot

corresponds to an explicit set of main memory blocks. For a direct

mapped cache, each main memory block can be mapped to only one slot,

but each slot can receive more than one block. The mapping from main

memory blocks to cache slots is performed by partitioning an address into

fields for the tag, the slot, and the word as shown below:

The 32-bit main memory address is partitioned into a 13-bit tag field,

followed by a 14-bit slot field, followed by a five-bit word field. When a

reference is made to a main memory address, the slot field identifies in

which of the 214 slots the block will be found if it is in the cache. If the

valid bit is 1, then the tag field of the referenced address is compared with

the tag field of the slot. If the tag fields are the same, then the word is

taken from the position in the slot specified by the word field. If the valid

bit is 1 but the tag fields are not the same, then the slot is written back to

main memory if the dirty bit is set, and the corresponding main memory

block is then read into the slot. For a program that has just started

execution, the valid bit will be 0, and so the block is simply written to the

slot. The valid bit for the block is then set to 1, and the program resumes

execution.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

140

Advantages and Disadvantages of the Direct Mapped Cache

The direct mapped cache is a relatively simple scheme to implement. The

tag memory in the example above is only 13 x 214 bits in size, less than

half of the associative mapped cache. Furthermore, there is no need for an

associative search, since the slot field of the main memory address from

the CPU is used to “direct” the comparison to the single slot where the

block will be if it is indeed in the cache.

This simplicity comes at a cost. Consider what happens when a program

references locations that are 219 words apart, which is the size of the

cache. This pattern can arise naturally if a matrix is stored in memory by

rows and is accessed by columns. Every memory reference will result in

a miss, which will cause an entire block to be read into the cache even

though only a single word is used.

Worse still, only a small fraction of the available cache memory will

actually be used. Now it may seem that any programmer who writes a

program this way deserves the resulting poor performance, but in fact,

fast matrix calculations use power-of-two dimensions (which allows shift

operations to replace costly multiplications and divisions for array

indexing), and so the worst-case scenario of accessing memory locations

that are 219 addresses apart is not all that unlikely.

To avoid this situation without paying the high implementation price of a

fully associative cache memory, the set associative mapping scheme can

be used, which combines aspects of both direct mapping and associative

mapping.

3.3 Cache Performance

Notice that we can readily replace the cache direct mapping hardware

with associative or set associative mapping hardware, without making any

other changes to the computer or the software. Only the runtime

performance will change between methods. Runtime performance is the

purpose behind using a cache memory, and there are a number of issues

that need to be addressed as to what triggers a word or block to be moved

between the cache and the main memory.

Cache read and write policies are summarized in Figure 25. The policies

depend upon whether or not the requested word is in the cache. If a cache

read operation is taking place, and the referenced data is in the cache, then

there is a “cache hit” and the referenced data is immediately forwarded to

the CPU. When a cache miss occurs, then the entire block that contains

the referenced word is read into the cache.

In some cache organizations, the word that causes the miss is immediately

forwarded to the CPU as soon as it is read into the cache, rather than

waiting for the remainder of the cache slot to be filled, which is known as

a load-through operation. For a non-interleaved main memory, if the word

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

141

occurs in the last position of the block, then no performance gain is

realized since the entire slot is brought in before load-through can take

place. For an interleaved main memory, the order of accesses can be

organized so that a load-through operation will always result in a

performance gain.

Figure 25: Cache Read and Write Policies

For write operations, if the word is in the cache, then there may be two

copies of the word, one in the cache, and one in main memory. If both are

updated simultaneously, this is referred to as write-through. If the write is

deferred until the cache line is flushed from the cache, this is referred to

as write-back.

Even if the data item is not in the cache when the write occurs, there is

the choice of bringing the block containing the word into the cache and

then updating it, known as write-allocate, or to update it in main memory

without involving the cache, known as write-no-allocate. Some

computers have separate caches for instructions and data, which is a

variation of a configuration known as the Harvard architecture (also

known as a split cache), in which instructions and data are stored in

separate sections of memory.

Since instruction slots can never be dirty (unless we write self-modifying

code, which is rare these days), an instruction cache is simpler than a data

cache. In support of this configuration, observations have shown that most

of the memory traffic moves away from main memory rather than toward

it.

Statistically, there is only one write to memory for every four read

operations from memory. One reason for this is that instructions in an

executing program are only read from the main memory, and are never

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

142

written to the memory except by the system loader. Another reason is that

operations on data typically involve reading two operands and storing a

single result, which means there are two read operations for every write

operation.

A cache that only handles reads, while sending writes directly to main

memory can thus also be effective, although not necessarily as effective

as a fully functional cache. As to which cache read and write policies are

best, there is no simple answer. The organization of a cache is optimized

for each computer architecture and the mix of programs that the computer

executes. Cache organization and cache sizes are normally determined by

the results of simulation runs that expose the nature of memory traffic.

4.0 Summary

In this unit, you have learnt that:

Cache memory, also called CPU memory, is high-speed static random

access memory (SRAM) that a computer microprocessor can access more

quickly than it can access regular random access memory (RAM).

A cache memory is faster than main memory and has fewer locations than

a main memory.

A cache is placed both physically closer and logically closer to the CPU

than the main memory

The physical memory is smaller than the size of the program, but is larger

than any single routine.

Self-Assessment Exercises 2

Fill in the gaps in the sentences below with the most suitable words:

1. In a direct mapped cache, each main memory block can be mapped to

only ________ slot.

2. Cache ________ occurs when the requested data is found in the cache.

3. The ________ policy determines whether data is written to both cache

and main memory simultaneously.

4.0 Conclusion

If the cache is designed properly then most of the time the processor will

request memory words that are already in the cache. Cache is memory

placed in between the processor and main memory. Cache is responsible

for holding copies of main memory data for faster retrieval by the

processor.Cache memory consists of a collection of blocks. Each block

can hold an entry from the main memory.

5.0 SUMMARY

Cache memory, also called CPU memory, is high-speed static random

access memory (SRAM) that a computer microprocessor can access more

quickly than it can access regular random access memory (RAM).

A cache memory is faster than main memory and has fewer locations than

a main memory.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

143

A cache is placed both physically closer and logically closer to the CPU

than the main memory

The physical memory is smaller than the size of the program, but is larger

than any single routine.

6.0 Tutor marked assignment

For a direct mapped cache a main memory address is viewed as consisting

of two fields list and define the two fields.

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1. B

2. B

3. A

Self-Assessment Exercise 2

1. One

2. Hit

3. Write-through

7.0 Reference and further reading

Computer Organization and Design – The Hardware / Software Interface,

David A. Patterson and John L. Hennessy, 4th Edition, Morgan

Kaufmann, Elsevier, 2009.

Computer Architecture – A Quantitative Approach , John L. Hen

nessy and David A.Patterson, 5th Edition, Morgan Kaufmann, Elsevier,

2011.

Computer Organization, Carl Hamacher, Zvonko Vranesic and Safwat

Zaky, 5th.Edition, McGraw- Hill Higher Education, 2011

