COURSE
GUIDE

IFT 212
COMPUTER ARCHITECTURE AND ORGANIZATION

Course Team Greg Onwodi (Developer/Writer) - NOUN
J. B. Awotunde (Reviewer) - Unillorin
Prof Joshua Abah (Course Editor)

6

N2aUN
NATIONAL OPEN UNIVERSITY OF NIGERIA

IFT 212 COURSE GUIDE

©2025 by NOUN Press

National Open University of Nigeria
Headquarters

University Village

Plot 91, Cadastral Zone

Nnamdi Azikiwe Expressway

Jabi, Abuja

Lagos Office
14/16 Ahmadu Bello Way
Victoria Island, Lagos

e-mail; centralinfo@nou.edu.ng
URL: www.nou.edu.ng

All rights reserved. No part of this book may be reproduced, in any form
or by any means, without exclusive permission in writing from the
publisher.

Printed 2009

Reviewed and Reprinted 2025

ISBN:978-978-786-494-4

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

MAIN

COURSE

CONTENTS PAGE
Module 1 Organization And Architecturecccoccvvvviniininnnnn, 1
Unit 1 Introduction To Computer Architecture

ANd Organizationccccveveeeiie e 1
Unit 2 Instruction Sets CharacteristiCsccccvvvvviiierieniiesieninn 15
Module 2 Computer ArithmeticC.........cccoovvviie i 20
Unit 1 The Arithmetic Implementation.............cccccceveeeveecieenee, 20
Unit 2 Control Flow Design/Operationcccoccevvvevveieenieennenn, 24
Module 3 Cpu Organization..........ccccvveiieiiieiiieneeneese e 54
Unit 1 CpU Organizationccoceerveeiesieesieesie e s see e e seeens 54
Unit 2 The Arithmetic And Logic Unit.........ccoceveiinieiincniennn. 61
Unit 3 The Control Unit ..o 69
Module 4 Instruction Set Architecture...........cocovvvienienieieennn, 8(
Unit 1 General Overview Of Instruction Set Architecture.......... 8(
Unit 2 INStruction Cycleoooveiiiece e 94
Module5 The Memory SYStemS.......ccccccvevieeiiie e 103
Unit 1 Computer MEMOIYcveeiiieeieece e 103
Unit 2 Memory HIerarchycccocvveiiiiniiie e, 114
Unit 3 Virtual Memorycccveiieceece e 123
Unit 4 Cache MEMOIYccov i 133

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

MODULE 1 ORGANIZATION AND ARCHITECTURE
Unit 1 Introduction to Computer Architecture
and Organization
Unit 2 Instruction Sets Characteristics
and Functions
Unit 3 Types of Operands
UNIT 1 INTRODUCTION TO COMPUTER

ARCHITECTURE AND ORGANIZATION
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Computer Organization and Architecture
3.2 Structure and Function
3.3 Computer Components
3.4 Instruction Fetch and Execute
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment

1.0 INTRODUCTION

Despite the variety and pace of change in the computer field, certain
fundamental concepts consistently apply throughout. The application of
these concepts depends on the current state of technology and the
price/performance objectives of the designer.

Many computer manufacturers offer a family of computer models, all
with the same architecture but with differences in their organization. In a
class of computers called microcomputers, the relationship between
architecture and organization is very close. Changes in technology not
only influence organizations but also result in the introduction of more
powerful and complex architectures. However, because a computer
organization must be designed to implement a particular architectural
specification, a thorough treatment of organization requires a detailed
examination of the architecture as well.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

20 OBJECTIVES

At the end of this unit, you should be able to:

. Explain the operational units of a computer system.

. Outline types of operands and operations specific by machine
instruction.

. Explain opcodes, operands, and addressing modes

3.0 MAIN CONTENT
31 COMPUTER ORGANIZATION AND ARCHITECTURE

Although it is difficult to give a precise definition, a consensus exists
about the general area covered by it. Computer organization refers to the
operational units and their interconnection that realize the architectural
specification.

Examples of architectural attributes include the instruction set, the
number of bits used to represent various data types (e. g numbers,
characters), 1/0 mechanism, and techniques for addressing memory.
Organizational attributes include hardware details transparent to the
programmer, such as control signals; interfaces between the computer
peripherals, and memory technology used.

In computer engineering, computer architecture isa set of rules and
methods that describe the functionality, organization, and implementation
of computer systems. The architecture of a system refers to its structure
in terms of separately specified components of that system and their
interrelationships.

Computer architecture consists of rules and methods or procedures that
describe the implementation, and functionality of the computer systems.
We can define computer architecture based on its performance,
efficiency, reliability, and cost of the computer system. It deals with
software and hardware technology standards.

32 STRUCTURE AND FUNCTION

A computer is a computer system, contemporary computers contain
millions of elementary electronic components.

. Structure: How the components are interrelated.
. Function: The operation of each component as part of the
structure.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

In terms of description, there are two choices: starting at the bottom and
building up to a complete description, or beginning with a top view and
decomposing the system into its subparts. Evidence from several fields
suggests that the top-down approach is the clearest and most effective.

The approach taken is that the computer be described from the top down.

Both the structure and functioning of a computer are simple. Figure 1
depicts the basic functions that a computer can perform. In general terms,
there are only four:

- Data processing

- Data storage
- Data movement
- Control
Storage Uit
Secondary
Storage
Data M Input » i M Output [—> Information
Unit Primary Unit
Storage
r. %
Control
Uit
(cu)
Arithmatic And
Logical Unit
(AL ”) » Data Flow
Control Flow

Central Processing
Unit (CPU)

Figure 1: The Basic Functions of Computer

The computer, of course, must be able to process data. The data may take
a wide variety of forms, and the range of processing requirements ID
broad. It is also essential that a computer stores data. Even if the computer
Is processing data on the fly (i.e. data come in and get processed and the
results go out immediately) the computer must temporarily store at least.
Those pieces of data that are being worked on at any given moment. Files
of data are stored on the computer for subsequent retrieval and update.

The computer must be able to move data between itself and the outside
world. The computer's operating environment consists of devices that
serve as either sources or destinations of data. When data are received

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

from or delivered to a device that is directly connected to the computer,
the process is known as input-output (1/0), and the device is referred to
as a peripheral. When data are moved over longer distances, to or from a
remote device, the process is known as data communications. Finally,
there must be control of these three functions. Ultimately, this control is
exercised by the individuals who provide the computer with instructions.
Within the computer, a control unit manages the resources of the
computer and orchestrates the performance of its functional parts in
response to those instructions.

There are four main structural components

- The central processing unit (CPU): Controls the operations of
the computer and performs its data processing functions; often
simply referred to as a processor.

- Main memory: Stores data

- I/0: Moves data between the computer and its external
environment.

- System interconnections: Some mechanism that provides for
communication among CPU, main memory, and I/0. A common
example of system interconnection is through a system bus,
consisting of several conducting wires to which all the other
components attach.

However, the most interesting and complex component is the CPU. Its

major structural components are as follows:

- Control unit: Controls the operations of the CPU and hence the
computer.

- Arithmetic and logic unit (ALU): Performs the computer data
processing functions.

- Registers: Provides storage internal to the CPU.

- CPU interconnection: Some mechanism that provides for
communication among the control unit, ALU, and registers.

3.3 COMPUTER COMPONENTS

Virtually all contemporary computer designs are based on concepts
developed by John Von Neumann at the Institute for Advanced Studies
Princeton. Such a design is referred to as the Von Neumann architecture
and is based on three key concepts:

. Data and instructions are stored in a single read-write memory.

. The contents of this memory are addressable by location, without
regard to the type of data contained there.

. Execution occurs sequentially (unless explicitly modified) from

one instruction to the next.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

There is a small set of basic logic components that can be combined in
various ways to store binary data and to perform arithmetic and logical
operations on that data. If there is a particular computation to be
performed, a configuration of logic components designed specifically for
that computation could be constructed. We can think of the process of
connecting the various components in the desired configuration as a form
of programming. The resulting "program™ is in the form of hardware and
Is termed a hardwired program.

Now consider this alternative. Suppose we construct a general-purpose
configuration of arithmetic and logic functions. This set of hardware will
perform various functions on data depending on control signals applied to
the hardware. In the original case of customized hardware, the system
accepts data and produces results Figure 2a. With general-purpose
hardware, the system accepts data and control signals and produces
results. Thus, instead of rewiring the hardware for each new program, the
programmer merely needs to supply a new set of control signals.

How shall control signals be supplied? The answer is simple but subtle.
The entire program is a sequence of steps. At each step, some arithmetic
or logical operation is performed on some data. For each step, a new set
of control signals is needed. Let us provide a unique code for each
possible set of control signals, and let us add to the general-purpose
hardware a segment that can accept a code and generate control signals
(Figure 2Db).

Sequence of
Data ——————3» arlthme?l{: Results
and logic

functions

(a) Programming in hardware

Instruction Instruction
_b .
codes interpreter

Control
signals

General-purpose
arithmetic
Data ——— . Results

and logic

functions

(b) Programming in software

Figure 2. Hardware and Software Approaches

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Programming is now much easier. Instead of rewiring the hardware for
each new program, all we need to do is provide a new sequence of codes.
Each code is, in effect, an instruction, and part of the hardware interprets
each instruction and generates control signals. To distinguish this new
method of programming, a sequence of codes or instructions is called
software.

Figure 2b indicates two major components of the system: an instruction
interpreter and a module of general-purpose arithmetic and logic
functions. These two constitute the CPU. Several other components are
needed to yield a functioning computer. Data and instructions must be put
into the system. For this, we need some sort of input module. This module
contains basic components for accepting data and instructions in some
form and converting them into an internal form of signals usable by the
system. A means of reporting results is needed, and this is in the form of
an output module. Taken together, these are referred to as 110
components.

One more component is needed. An input device will bring instructions
and data in sequentially. But a program is not invariably executed
sequentially; it ma, jump around (e.g., the IAS jump instruction).
Similarly, operations on data may require access to more than just one
element at a time in a predetermined sequence Thus, there must be a place
to store temporarily both instructions and data. That module is called
memory, or main memory to distinguish it from external storage of
peripheral devices. Von Neumann pointed out that the same memory
could be used to store both instructions and data.

Figure 3 illustrates these top-level components and suggests the
interaction among them. The CPU exchanges data with memory. For this
purpose, it typically makes use of two internal (to the CPU) registers: a
memory address register (MAR), which specifies the address in memory
for the next read or write, and a memory buffer register (MBR), which
contains the data to be written into memory receives the data read from
memory. Similarly, an 1/0 address register (I/OAR specifies a particular
1/0 device. An 1/0 buffer (I/OBR) register is used for the exchange of data
between an 1/0 module and the CPU.

A memory module consists of a set of locations, defined by sequentially
numbered addresses. Each location contains a binary number that can be
interpreted as either an instruction or data. A 1/0 module transfers data
from external devices' CPU and memory, and vice versa. It contains
internal buffers for temporarily holding these data until they can be sent
on.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Having looked briefly at these major components, we now turn to an
overview of how these components function together to execute
programs.

CPU Main Memory
: 0
System 1
PC | MAR | aas — .
Ie=tracson :
: .
[R | _\IBR | BEraemsd

5

Diata

Extcution
uzie 'O BR -
Data
'O Module : i
a=1
; PC = Program counter
" Buffers IR = Instruction register
MAR = Memory address register
MBR = Memory buffer register

10 AR = Imputioutpurt address register
IO BR = Inputroutput buffer register

Figure 3. Computer Components Top-level View

The key elements of program execution. In its simplest form, instruction
processing consists of two steps: The processor reads (fetches)
instructions from memory one at a time and executes each instruction.
Program execution consists of repeating the process of instruction fetch
and instruction execution. The instruction execution may involve several
operations and depends on the nature of the instruction (see, for example,
the lower portion of Figure 2.4).

The processing required for a single instruction is called an instruction
cycle.

The two steps are referred to as the fetch cycle and the execute cycle.
Program execution halts only if the machine is turned off, some sort of
unrecoverable error occurs, or a program instruction that halts the
computer is encountered.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

3.4 Instruction Fetch and Execute

At the beginning of each instruction cycle, the processor fetches an
instruction from memory. In a typical processor, a register called the
program counter (PC) holds the address of the instruction to be fetched
next. Unless told otherwise, the processor. Using the simplified two-step
description given previously, the instruction cycle is depicted in Figure 4.

Fetch Cycle Execute Cycle

™ Fetch Next Execute ™
i’ L
\ START) "l Instruction Instruction \ HALT)

Figure 4. Basic Instruction Cycle

Explain an instruction fetch using the components of Figure 3

1) The PC holds the address of the next instruction to execute. The
contents of the PC are placed on the System Bus and the PC is
incremented to the next instruction to be executed.

2) The instruction from Main Memory is retrieved and placed into the
IR using the System Bus.

Note: The MAR and MBR registers are also used in the process but for
now we will ignore their use for simplicities sake.

The processor will then interpret the instruction and perform an action.
What are these possible actions? always increments the PC after each
instruction fetch so that it will fetch the next instruction in sequence (i.e.,
the instruction located at the next higher memory address). So, for
example, consider a computer in which each instruction occupies one 16-
bit word of memory. Assume that the program counter is set to location
300. The processor will next fetch the instruction at location 300. On
succeeding instruction cycles, it will fetch instructions from locations
301, 302, 303, and so on. This sequence may be altered, as explained
presently.

The fetched instruction is loaded into a register in the processor known as
the instruction register (IR). The instruction contains bits that specify the
action the processor is to take. The processor interprets the instruction and
performs the required action. In general, these actions fall into four
categories:

I. Processor-memory: Data may be transferred from processor to

memory or from memory to processor.

il Processor-1/0: Data may be transferred to or from a peripheral

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

device be transferring between the processor and an I/0O module.

iii. Data processing: The processor may perform some arithmetic or
logic operation on data.

iv. Control: An instruction may specify that the sequence of
execution is altered. For example, the processor may fetch an
instruction from location 149, which specifies that the next
instruction is from location 182. The processor will remember this
fact by setting the program counter to 182. Thus, on the next fetch
cycle, the instruction will be fetched from location 182 rather than
150.

An instruction's execution may involve a combination of these actions.
The processor contains a single data register called an accumulator (AC).
Both instructions and data are 16 bits long. Thus, it is convenient to
organize memory using 16-bit words. The instruction format provides 4
bits for the opcode so that there can be as many as 2* = 16 different
opcodes, aup to 212 = 4096 (4K) words of memory can be directly
addressed. Address 941 and stores the result in the latter location. Three
instructions, which be described as three fetch and three execute cycles,
are required:

1. The PC contains 300, the address of the first instruction. This
instruction value is 1940 in hexadecimal) is loaded into the
instruction register IR anPC is incremented. Note that this process
involves the use of a memory dress register (MAR) and a memory
buffer register (MBR). For simply these intermediate registers are
ignored.

2. The first 4 bits (first hexadecimal digit) in the IR indicate that the
AC is loaded. The remaining 12 bits (three hexadecimal digits)
specify the ac (940) from which data are to be loaded.

3. The next instruction (5941) is fetched from location 301 and
incremented.

4, The old contents of the AC and the contents of location 941 are
added an result is stored in the AC.

5. The next instruction (2941) is fetched from location 302 and the F
Is incremented.

6. The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch cycle
execute cycle, are needed to add the contents of location 940 to the
contents C With a more complex set of instructions, fewer cycles would
be needed. Some processors, for example, included instructions that
contain more than one address. Thus the execution cycle for a particular
instruction on such prop could involve more than one reference to
memory. Also, instead of memory references, an instruction may specify
an 1/O operation. Figure 5 shows the characteristics of a hypothetical
machine.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

| Opcode | Address |

(a) Instruction format

0 1 15
[S | Magnitude

(b) Integer format

Figure 5. Characteristics of Hypothetical Machine

Program Counter (PC) = Address of Instruction
Instruction Register (IR) = Instruction begin executed
Accumulator (AC) = Temporary storage

(c) Internal CPU Registers

0001 = Load AC from Memory
0010 = Store AC to Memory
0101 = Add to AC from Memory

(d) Partial list of opcodes

For example, the PDP-11 processor includes an instruction, expressed

physically as ADD B, A, that stores the sum of the contents of memory

location B into memory location A. A single instruction cycle with the
following steps

. Fetch the ADD instruction.

. Read the contents of memory location A into the processor.

. Read the contents of memory location B into the processor. To
contents of A are not lost, the processor must have at least two
registers storing memory values, rather than a single accumulator.

. Add the two values

. Write the result from the processor to memory location A.

Thus, the execution cycle for a particular instruction may involve more
than one reference to memory. Also, instead of memory references, an
instructor specifies an 1/O operation.

For any given instruction cycle, some states -null and others may be
visited more than once. The states can be described as follows:

Instruction address calculation (ac): Determine the address of the next
instruction to be executed. Usually, this involves adding a fixed number
to the address of the previous instruction. For example, if each instruction
is 16 bits long and memory is organized into 16-bit words, then add 1 to

10

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

the previous ad- dress. If, instead, memory is organized as individually
addressable 8-bit bytes, then add 2 to the previous address.

 Inscruction Operand Operand
fetch fetch store
Multiple Malsiple
operands results
v
Iestruction Instruction Operand Operaad
| addres: opcrauu —p addrez: [—anl f—) ldd.re h'm — hm'rupt
leulatinl) ding Uealculation Operation

Instruction complete, Returs for stning m(errup(
fetch next instruction or vector data

Figure 6. The Instruction Cycle State with Interrupts

Instruction fetch (if): Read instruction from its memory location into the
processor.

Instruction operation decoding (iod): Analyze instruction to determine
the type of operation to be performed and operand(s) to be used.

Operand address calculation (oac): If the operation involves reference
to an operand in memory or available via 1/O, then determine the address
of the operand.

Operand fetch (of): Fetch the operand from memory or read it in from
1/0. Data operation (do): Perform the operation indicated in the
instruction. Operand store (0s): Write the result into memory or out to 1/O.
States in the upper part of Figure 6 involve an exchange between the
processor and either memory or a 1/O module. States in the lower part of
the diagram involve only internal processor operations. The oac state
appears twice, because an instruction may involve a read, a write, or both.
However, the action performed during that state is fundamentally the
same in both cases and so only a single state identifier is needed. Also
note that the diagram allows for multiple operands and multiple results
because some instructions on some machines require this. For example,
the PDP-11 instruction ADD A, B results in the following sequence of
states: iac, if, iod, oac, of, oac, of, do, oac, os.

Finally, on some machines, a single instruction can specify an operation
to be performed on a vector (one-dimensional array) of numbers or a
string (one- dimensional array) of characters. As Figure 6 indicates, this
would involve repetitive operand fetch and/or store operations.

11

IFT 212

COMPUTER ARCHITECTURE AND ORGANIZATION

Table 1. Classes of Interrupts

Program

Generated by some conditions that occur as a result of an
instruction execution, such as arithmetic overflow,
division by zero, attempt to execute an illegal machine
instruction, or reference outside a user’s allowed memory
space.

Timer

Generated by a timer within the processor. This allows the
operating system to perform certain functions regularly.

1/0

Generated by an 1/O controller, to signal normal
completion of an operation to signal a variety of error
conditions.

Hardware
failure

Generated by a failure such as power failure or memory
parity error.

Self-Assessment Exercises 1
Answer the following questions by choosing the most suitable option:

1. What is the primary difference between computer organization and
computer architecture?

A

B.

C.

D.

Organization deals with software while architecture deals
with hardware

Architecture refers to attributes visible to programmers
while organization refers to operational units and their
interconnections

Organization is more important than architecture in system
design

There is no difference between the two terms

2. Which of the following is NOT one of the four basic functions of
a computer?

A. Data processing
B. Data storage
C. Data encryption
D. Data movement
3. What are the main structural components of a computer system?
A. CPU, Main memory, 1/0O, System interconnections
B. Hardware, Software, Data, Procedures
C. Input, Processing, Output, Storage
D. Registers, ALU, Control Unit, Cache

Self-Assessment Exercises 2
Fill in the gaps in the sentences below with the most suitable words:

1. The

processing unit (CPU) controls the operations of the

computer and performs its data processing functions.

12

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

2. The Von Neumann architecture is based on three key concepts, one
of which is that data and are stored in a single read-write
memory.

3. The instruction cycle consists of two main steps: the
cycle and the cycle.

4.0 CONCLUSION

Computer architecture and organization form the foundation of modern
computing systems. Architecture defines what the system can do - the
Instruction set, data types, addressing modes, and interface specifications
visible to programmers. Organization, on the other hand, determines how
these architectural specifications are implemented through hardware
components and their interconnections. The Von Neumann architecture
remains the dominant model, with its key principles of stored program
concept, sequential execution, and unified memory for instructions and
data. Understanding the relationship between structure and function,
along with the basic computer components (CPU, memory, 1/0, and
system interconnections), provides the essential knowledge needed to
comprehend how modern computers operate and execute instructions.

5.0 SUMMARY

This unit introduced the fundamental concepts of computer architecture
and organization. Computer architecture refers to the attributes of a
system visible to programmers, including instruction sets, data types, and
addressing mechanisms. Computer organization deals with the
operational units and their interconnections that realize the architectural
specifications. The four basic functions of a computer are data processing,
data storage, data movement, and control. A computer system consists of
four main structural components: the CPU (which includes the control
unit, ALU, and registers), main memory, I/O systems, and system
interconnections. The Von Neumann architecture, based on the stored
program concept, sequential execution, and unified memory, forms the
foundation of modern computer design. The instruction cycle, consisting
of fetch and execute phases, describes how computers process individual
instructions.

6.0 TUTOR-MARKED ASSIGNMENT

1. Explain the distinction between computer architecture and
computer organization. Provide two examples of architectural
attributes and two examples of organizational attributes. (10
marks)

2. Describe the four basic functions of a computer system and explain
how these functions interact during program execution. (8 marks)

13

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

3. The Von Neumann architecture is fundamental to modern
computer design. List and explain the three key concepts on which
this architecture is based. Discuss one advantage and one
limitation of this architectural approach. (12 marks)

Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1
1.B
2.C
3. A

Self-Assessment Exercise 2
1. Central

2. Instructions

3. Fetch, execute

14

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

UNIT 2 INSTRUCTION SETS CHARACTERISTICS
CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Instruction Formats
3.1.1 Instruction Length

3.2 Instruction Sets Characteristics
3.2.1 Elements of Machine Instruction
3.2.2 Instruction Representation

3.3 Instruction Set Design

4.0 Conclusion

5.0 Summary

6.0 Tutor- Marked Assignment

7.0 References/ Further Reading

1.0 INTRODUCTION

One boundary where the computer designer and the computer
programmer can view the same machine is the machine instruction set.
From the designers’ point of view, the machine instruction set provides
the functional requirements for the processor. Implementing the processor
Is a task that largely involves implementing the machine instruction set.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

. Explain the instruction format
o Understand the instruction length and characteristics

3.0 MAINCONTENT
3.1 INSTRUCTION FORMATS

An instruction format defines the layout of the bits of an instruction in
terms of its constituent fields. An instruction format must include an
opcode and implicitly or explicitly, zero or more operands, and The
format must implicitly and explicitly, indicate the addressing mode for
each operand. For most instruction sets, more than one instruction format
IS used.

15

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

311 INSTRUCTION LENGTH

The most basic design issue to be faced is the instruction format length.
These decisions effects and are affected by, memory size, memory
organization bus structure process complexity, and processor speed. This
decision determines the richness and flexibility of the machine.

3.2 INSTRUCTION SETS CHARACTERISTICS

The operation of the processor is determined by the instructions it
executes referred to as machine instructions or computer instructions. The
collection of different instructions that the processor can execute is
referred to as the processor's instruction set.

321 ELEMENTS OF MACHINE INSTRUCTION

These elements are as follows:

- Operation code: Specifies the operation to be performed (e.g.,
ADD, 1/0). The operation is specified by a binary code, known as
the operation code or opcode.

- Source operand reference: This operation may involve one or
more source operands, that is operands that are inputs for the
operation

- Results from operands reference: The operation may produce a
result

- Next instruction reference: This tells the processor where to fetch
the next instruction after the execution of this instruction is
complete.

The address of the next instruction to be fetched could be either a real

address or a virtual address, depending on the architecture. Generally, the

distinction is transparent to the instruction set architecture. In most cases,

the next instruction to be fetched immediately follows the current

instruction. In most cases, there is no explicit reference to the next

instruction when an explicit reference is needed then the main memory or

virtual memory address must be supplied. Source and result operands can

be in one of four areas.

- Main or virtual memory: As with the next instruction references,
the main or virtual memory address must be supplied.

- Processor register: With rare exception, a processor contains one
or more registers that may be referenced by machine instructions.
If only one register exits reference to it may be implicit. If more
than one register exists, then each register is assigned a unique
name or number, and the instruction must contain the number of
the designed register

- Immediate: The value of the operand is contained in a field in the

16

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

instruction being executed.

- I/O device: The instruction must specify the I/O module and
device for operation. If memory-mapped 1/O is used, this is just
another main or virtual memory address

Self-Assessment Exercises 1
Answer the following questions by choosing the most suitable option:

1. Which of the following is NOT an element of a machine instruction?
A. Operation code
B. Source operand reference
C. Memory address register
D. Next instruction reference

2. What does the opcode specify in an instruction?
A. The memory location of data
B. The operation to be performed
C. The size of the operand
D. The addressing mode

3. How many different opcodes can be represented with 4 bits?

322 INSTRUCTION REPRESENTATION

In a computer, each instruction is represented by a sequence of bits. The
instruction is divided into fields corresponding to the constituent elements
of the instruction. Opcodes are represented by abbreviations called
mnemonics that indicate their operation. Common examples include:

ADD add

SUB SUBTRACT

MUL multiply

DIV divide

LOAD Load data form memory STOR Store data to

memory

Operands are also represented in a symbolic manner. For example

the instruction ADD, R, Y.

This may mean adding the value contained in data location Y to the
contents of register R. In this example, Y refers to the address of a location
in memory, and R refers to a particular register. Note that the operation is
performed on the contents of a location, not on its address:

17

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Thus, it is possible to write a machine-language program in symbolic
form.

X=413
Y=414

A simple program accepts this symbolic input, converts opcodes and
operand references to binary form, and constructs binary machine
instructions. However, symbolic machine language remains a useful tool
for describing machine instructions, and we will use it for that purpose.

Assume that variables X and Y correspond to locations 413 and 414,
respectively. Assuming a simple set of machine instructions, this
operation can be accomplished with three instructions.

1. Load a register with the content of memory location 413.
2. Add the contents of memory location 414 to the register.
3. Store the contents of the register in memory location 413.

3.3 INSTRUCTION SET DESIGN

One of the most interesting and most analyzed, aspects of computer

design is instruction set is very complex because it affects so many aspects

of the computer system. The instruction defines any of the functions

performed by the processor and thus has a significant effect on the

implementation of the process. The instruction set is the programmer’s

means of controlling the processor. Thus, programmer requirements must

be considered in designing the instruction set. The most important of these

fundamental design issues include the following:

- Operation repertoire: How many and which operations to
provide and how complex operations should be.

- Data types: The various types of data upon which operations are
performed.

- Instruction format: Instruction length (in nits) number of assesses
size of various fields and so on.

- Registers: Number of processor registers that can be referenced
by instructions and their use.

- Addressing: The mode or modes by which the address of an
operand is specified.

These issues are highly interrelated and must be considered together in
designing an instruction set.

40 CONCLUSION
Despite the variety and pace of change in the computer field, certain

fundamental concept applies consistently throughout. The application of

18

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

these concepts depends on the current state of technology and the
price/performance objectives of the designer.

50 SUMMARY

Computer organization refers to the operational units and their
interconnections that realize the architectural specification.

Computer architecture refers to those attributes of a system visible to a
programmer or those attributes that have a direct impact on the logical
execution of a program. The collection of different instructions that the
processor can execute is referred to as the processor’s instruction set and
an to instruction format defines the layout of the bits of instruction, in
terms of its constituents’ fields.

Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1
1.C

2.B
3.D

6.0 TUTOR- MARKED ASSIGNMENT

1. What in general terms is the distinction between computer
organization and computer architecture?

2. What are the four main functions of a computer?

3. List and briefly explain five important instruction set design issues

7.0 REFERENCES/ FURTHER READING

Hennessy, J. L., & Patterson, D. A. (2011). Computer architecture: a
quantitative approach. Elsevier.

Patterson, D. A., Brooks Jr, F. P., Sutherland, I. E., & Thacker, C. P.
(2011). Computer architecture. Elsevier Science.

Null, L. (2023). Essentials of Computer Organization and Architecture.
Jones & Bartlett Learning.

Sloss, A; Symes, D; and Wright, C.ARM system developers guide an
Fransisco Morgan Kaufmann, 2004

19

IFT 212

COMPUTER ARCHITECTURE AND ORGANIZATION

MODULE 2 COMPUTER ARITHMETIC

UNIT 1: The Arithmetic Implementation
UNIT 2: Control Flow Design/Implementation

UNIT

1.0
2.0
3.0
31
3.2
3.3
3.4
3.5
4.0
5.0
6.0
7.0

1.0

1 THE ARITHMETIC IMPLEMENTATION

Introduction

Objectives

Main content

The arithmetic and basic unit
Integer representation
Integer Arithmetic

Floating point representation
Floating point arithmetic
Conclusion

Summary

TM.A

Reference and Further Reading

INTRODUCTION

This unit focuses on the most complex aspect of the ALU, computer
arithmetic. Computer arithmetic is commonly performed on two very
different types of numbers: integer and floating point. In both cases, the
representation chosen is a crucial design issue and is treated first.
Computer arithmetic is the branch of computer science that deals with the
representation and manipulation of numerical quantities in a computer
system. Here are some basic concepts and operations involved in
computer arithmetic:

1.

20

Number systems: Computers use different number systems to
represent numerical quantities, including binary (base 2), decimal
(base 10), and hexadecimal (base 16) systems. In binary system,
each digit can only be either 0 or 1, while in decimal system, each
digit can be any of the 10 digits from 0 to 9.

Arithmetic operations: The basic arithmetic operations used in
computer arithmetic are addition, subtraction, multiplication, and
division. These operations are usually performed using arithmetic
circuits within the CPU.

Overflow: In computer arithmetic, overflow occurs when the result
of an arithmetic operation is too large to be represented in the
available number of bits. This can result in incorrect or unexpected
results.

Floating-point arithmetic: Floating-point arithmetic is used to
represent and perform operations on non-integer numbers. It
involves representing a number as a combination of a mantissa (or
significand) and an exponent.

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

5. Round-off errors: Round-off errors occur in floating-point
arithmetic due to the limited precision of the number
representation. This can result in small inaccuracies in the
computed results.

6. Bitwise operations: Bitwise operations are used to manipulate
individual bits in a number. The basic bitwise operations include
AND, OR, XOR, and NOT.

7. Two’s complement representation: Two’s complement
representation is a method of representing negative numbers in
binary. In this representation, the most significant bit is used as a
sign bit, with O indicating a positive number and 1 indicating a
negative number.

Overall, computer arithmetic is a fundamental aspect of computer science
and is used in a wide range of applications, including scientific
computing, financial analysis, and digital signal processing.

20 OBJECTIVES

At the end of this unit, you should be able to

Recognize and explain the importance of various bases in computing.
Perform arithmetic operations with floating-point numbers.

Describe the fixed-point number representation and its applications.

31 THEARITHMETIC AND LOGIC UNIT

The arithmetic and logic unit (ALU) is that part of the computer that
performs arithmetic and logical operations on data. All of the other
elements of the computer system- Control unit, registers memory, 1/0- are
there mainly to bring into the ALU for it to process and then take the result
back out.

An ALU and all electronic components in the computers are based on the
use of simple digital logic devices that can store binary digits and perform
simple Boolean logic operations. Data are presented to the ALU in
registers and the results of an operation are stored in registers. These
registers are temporary storage locations within the processor that are
connected by signal paths to the ALU. The ALU may also set flags as the
result of an operation. For example, an overflow flag is set to 1 if the result
of a computation exceeds the length of the register into which it is to be
stored. The flag values are also stored in registers within the processor.
The control unit provides signals that control the operation of the ALU
and the movement of the data into and out of the ALU.

Representing and storing numbers were the basic operations of the
computers of earlier times. The real go came when computation,
manipulating numbers like adding and multiplying came into the picture.
These operations are handled by the computer’s arithmetic logic unit

21

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

(ALU). The ALU is the mathematical brain of a computer. The first ALU
(Arithmetic Logic Unit) was indeed the INTEL 74181, which was
implemented as part of the 7400 series TTL (Transistor-Transistor Logic)
integrated circuits. It was released by Intel in 1970.

ALU is a digital circuit that provides arithmetic and logic operations. It is
the fundamental building block of the central processing unit of a
computer. A modern central processing unit(CPU) has a very powerful
ALU and it is complex in design. In addition to ALU modern CPU
contains a control unit and a set of registers. Most of the operations are
performed by one or more ALUs, which load data from the input
register. Registers are a small amount of storage available to the CPU.
These registers can be accessed very fast. The control unit tells ALU what
operation to perform on the available data. After
calculation/manipulation, the ALU stores the output in an output register.

32 INTEGER REPRESENTATION

In the binary number, arbitrary numbers can be represented with just the
digits zero and the minis sign, and the period or radix point.
-1101.0101,=-13.312510

For purposes of computer storage and processing, however, we do not
have the benefits of minus signs and periods. Only binary digits (0 and 1)
may be used

to represent numbers. If we are limited to non-negative integers, the
representation is straight forward.

An 8-bit word can represent the numbers from 0 to 255, including

00000000 =0
00000001 =1
00101001 =41
10000000 =128
11111111 =255
In general, if an n-bit sequence of binary digits is interpreted as an
unsigned integer, A it value is
A=n-1

000000000000000000000Y, 2i ai

2=0
In going from the first to the second equation, we require that the least
significant n - 1 bits do not change between the two representations. Then
we get to next to the last equation, which is only true if all of the bits in
positions theorem 2 are 1. Therefore, the sign-extension rule works.
Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. What is the range of numbers that can be represented using 8-bit

22

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

unsigned binary?
A.0to 127
B.-128to 127
C.0to 255
D. -255 to 255

2. In two's complement representation, what does the most significant bit
represent?

A. The magnitude of the number

B. The sign of the number

C. The decimal point location

D. The base of the number system

3. What is the primary advantage of two's complement representation?
A. It uses less memory
B. It simplifies arithmetic operations
C. It allows larger numbers
D. It is easier to understand

Fixed-point representation

Finally, we mention that the representations discussed in this section are
sometimes referred to as fixed points. This is because the radix point
(binary point) is fixed and assumed to be to the right of the rightmost digit.
The programmer can use the representation for binary fractions by scaling
the numbers so that the binary poor implicitly positioned at some other
location.

Negative Number Representation

Sign Magnitude

Sign magnitude is a very simple representation of negative numbers. In
sign-magnitude, the first bit is dedicated to representing the sign and
hence it is called the sign bit.

The sign bit ‘1’ represents a negative sign.

The sign bit ‘0’ represents a positive sign.

In the sign-magnitude representation of n-bit number, the first bit will
represent the sign, and the rest n-1 bits represent the magnitude of the
number.

For example,

+25=011001

Where 11001 = 25

And 0 for ‘+’

-25=111001

Where 11001 = 25

And 1 for “-°.

Range of number represented by sign magnitude method = -(2n-1-1)
to +(2n-1-1) (for n bit number)

But there is one problem in sign-magnitude and that is we have two

23

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

representations of 0

+0 = 000000

—0=100000

2’s complement method

To represent a negative number in this form, first we need to take the 1’s

complement of the number represented in simple positive binary form and

then add 1 to it.

For example:

(-8)10 = (1000)2

1’s complement of 1000 =0111

Adding 1 toit, 0111 + 1 =1000

So, (-8)° = (1000)?

Please don’t get confused with (8)*° =1000 and (-8)1°=1000 as with 4 bits,

we can’t represent a positive number more than 7. So, 1000 is representing

-8 only.

Range of number represented by 2’s complement = (-2"1 to 2" — 1)
Floating point representation of numbers

32-bit representation floating point numbers IEEE standard

Normalization

. Floating point numbers are usually normalized

. The exponent is adjusted so that the leading bit (MSB) of the

mantissa is 1

. Since it is always 1 there is no need to store it

. Scientific notation where numbers are normalized to give a single

digit before the decimal point like in a decimal system e.g. 3.123 x 103

Some insight into two complement addition and subtraction can be gained

by looking at a geometric depiction. The circle in the upper half of each

part of the figure is formed by selecting the appropriate segment of the

number line and joining the endpoints. Note that when the numbers are

laid out on a circle, the twos complement of any number are horizontally

opposite that number (indicated by dashed horizontal lines). Starting at

any number on the circle, we can add positive k (or subtract negative k),

to that number by moving k positions clockwise, and we can subtract

positive k (of add negative k) from that number by moving k positions

counterclockwise. If an arithmetic operation results in traversal of the

point where the endpoints are joined, an incorrect answer is given

(overflow).

The central element is a binary adder, which presents two numbers for

addition and produces a sum and an overflow indication. The binary adder

treats the two numbers as unsigned integers. In addition, the two numbers

are presented to the adder from two registers, designated in this case as A

and B registers. The result may be stored in one of these registers or a

third. The overflow indication is stored in a 1-bit overflow flag (0 = no

overflow; | = overflow). For subtraction, the

40 CONCLUSION

Numbers are represented in binary form and the algorithms used for basic

24

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

arithmetic operators are add, subtract, multiply, and divide

50 SUMMARY

- An ALU and all electronic components in the digital logic devices
that store binary digits and perform simple Boolean logic operations

- Overflow rule occurs when two numbers positive or negative
numbers are added and the result of the addition has the opposite sign.

- Subtraction flow is to subtract one number (subtracted) from
another (minuend) take the two compliments (negation) of the subtrahend
and hold it to the minuend.

Floating point numbers are expressed as a number (significant) multiplied
by a constant (base) raised to some integer power (exponent). It can be
used to represent very large and very small numbers.

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1.C

2.B

3.B

6.0 TUTOR- MARKED ASSIGNMENT

1. What is asign-extension rule for two
compliment numbers?

2. Find the following differences using two complement arithmetic:

a. 1111011 b.10101110c¢. 111110010111

-100100 -111-1-1 -111010010101

7.0 Reference and further reading

Null, L. (2023). Essentials of Computer Organization and Architecture.
Jones & Bartlett Learning.

Englander, 1., & Wong, W. (2021). The architecture of computer
hardware, systems software, and networking: An information technology
approach. John Wiley & Sons.

Swartzlander, E. editor computer Arithimetic, volumes | and Il. Los
Alamitiss, CA IEEE Computer society press, 1990.

25

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

UNIT 2 CONTROL FLOW DESIGN/OPERATION

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Micro- Operation

3.2 Control of the Processor

3.3 Hard-wired implementation

34 Micro-programmed control

4.0 Conclusion

50 Summary

60 T.MA

7.0 Reference and further reading

1.0 Introduction

The execution of an instruction involves the execution of a sequence of
sub-steps, generally called cycles. For example, an execution may consist
of fetch, indirect, execute, and interrupt cycles. Each cycle is in turn made
up is a sequence of more fundamental operations called micro-operations.
A single micro-operation generally involves transfer between registers a
register and an external bus, or a simple ALU operation.

2.0 At the end of this unit, you should be able to

- Understand that each cycle is in turn made up of a sequence of
more fundamental operations called micro-operations.

- Identify hardwired implementation

- Explain micro-programmed control

31 MICRO OPERATIONS

The prefix micro refers to the fact that each step is very simple and
accomplishes very little. To design a control unit each of the smaller
cycles involves a series of steps each of which involves the processor
registers. We refer to these steps as micro-operations. Micro operations
are the functional, or atomic operations of a processor.

Three. Now, we turn to the question of how these functions are performed
or, more specifically, how the various elements of the processor are
controlled to provide these functions. Thus, we turn to a discussion of the
control unit, which controls the operation of the processor.

We have seen that the operation of a computer, in executing a program,
consists of a sequence of instruction cycles, with one machine instruction
per cycle. Of course, we must remember that this sequence of instruction
cycles is not necessarily the same as the written sequence of instructions
that make up the program, because of the existence of branching
instructions. What we are referring to here is the execution time sequence
of instructions.

We have further seen that each instruction cycle is made up of several
smaller units. One subdivision that we found convenient is fetch, indirect,

26

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

execute, and interrupt, with only fetch and execute cycles always
occurring.

To design a control unit, however, we need to break down the description
further. In our discussion of pipelining in Chapter 12, we began to see that
further decomposition is possible. We will see that each of the smaller
cycles involves

a series of steps, each of which involves the processor registers. We will
refer to these steps as micro-operations. The prefix micro refers to the fact
that each step is very simple and accomplishes very little. Figure 15.1
depicts the relationship among the various concepts we have been
discussing. To summarize, the execution of a program consists of the
sequential execution of instructions. Each instruction is executed during
an instruction cycle made up of shorter subcycles (e.g., fetch, indirect,
execute, interrupt). The execution of each subcycle involves one or more
shorter operations, that is, micro- operations.

Micro-operations are the functional, or atomic, operations of a processor.
In this section, we will. examine micro-operations to gain an
understanding of how the events of any instruction cycle can be described
as a sequence of such m' operations. A simple example will be used. In
the remainder of this chapter.

-then show how the concept of micro-operations serves as a guide to the
design control unit. Figure 7 displayed the contituent element of a
program execution.

Program Execution

P s S

Instruction Cycle Instruction Cycle o EL K Instruction Cycle
| Fetch | I lndirectl | Execulel Ilnterrupll

(HOP| |pOP| [pOP| [pOP|

Figure 7. Contituent element of a program execution

'We begin by looking at the fetch cycle, which occurs at the beginning of
each instruction cycle and causes an instruction to be fetched from
memory.

Memory address register (MAR): Is connected to the address lines of the
bus. It specifies the address in memory for a read or write operation.

27

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Memory buffer register (MBR): Is connected to the data lines of the
system --

It contains the value to be stored in memory or the last value read from
melr

_ Program counter (PC): Holds the address of the next instruction to be
fetched

Instruction register (IR): Holds the last instruction fetched.

Let us look at the sequence of events for the fetch cycle from the point of
view of its effect on the processor registers. An example appears in Figure
5 at the beginning of the fetch cycle, the address of the next instruction to
be executed is in the program counter (PC); in this case, the address is
1100100. The first steto move that addresses to the memory address
register

(MAR) because this is only registered and connected to the address lines
of the system bus. The second step bring in the instruction. The desired
address (in the MAR) is placed on the adder. We have seen that the
operation of a computer, in executing a program, consists of a sequence
of instruction cycles, with one machine instruction per cycle. Of course,
we must remember that this sequence of instruction cycles is not
necessarily the same as the written sequence of instructions that make up
the program, because of the existence of branching instructions. What we
are referring to here is the execution time sequence of instructions.

We have further seen that each instruction cycle is made up of several
smaller units. One subdivision that we found convenient is fetch, indirect,
execute, and interrupt, with only fetch and execute cycles always
occurring.

To design a control unit, however, we need to break down the description
further. We will see that each of the smaller cycles involves a series of
steps, each of which involves the processor registers. We will refer to
these steps as micro-operations. The prefix micro refers to the fact that
each step is very simple and accomplishes very little. Figure 15.1 depicts
the relationship among the various concepts we have been discussing. To
summarize, the execution of a program consists of the sequential
execution of instructions. Each instruction is executed during an
instruction cycle made up of shorter subcycles (e.g., fetch, indirect,
execute, interrupt). The execution of each subcycle involves one or more
shorter operations, that is, micro-operations.

Micro-operations are the functional, or atomic, operations of a processor.
bus, the control unit issues a READ command on the control bus, and the
result appears on the data bus and is copied into the memory buffer
register (MBR). We also need to increment the PC by the instruction
length to get ready for the next instruction. Because these two actions
(read word from memory, increment PC) do not interfere with each other,
we can do them simultaneously to save time. The third step is to move the
contents of the MBR to the instruction register (IR). This frees up the
MBR for use during a possible indirect cycle.

28

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Thus, the simple fetch cycle consists of three steps and four micro-
operations. Each micro-operation involves the movement of data into or
out of a register. So long as these movements do not interfere with one
another, several of them can take place during one step, saving time.
Symbolically, we can write this sequence of events as follows:
t;: MAR E- (PC) t2: MBR <-- Memory PC <- (PC) + 11t3: IR <-- (MBR)
where 1 is the instruction length. We need to make several comments
about this sequence. We assume that a clock is available for timing
purposes and that it emits regularly spaced clock pulses. Each clock pulse
defines a time unit. Thus, all time units are of equal duration. Each micro-
operation can be performed within the time of a single time unit. The
notation (t;, to, t3) represents successive time units. In words, we have
| First-time unit: Move contents of PC to MAR.
Second-time unit: Move contents of the memory location specified by
MAR to MBR. Increment by | the contents of the PC.
Third-time unit: Move contents of MBR to IR.
Note that the second and third micro-operations both take place during
the second time unit. The third micro-operation could have been grouped
with the fourth without affecting the fetch operation:
ti: MAR <- (PC) t2: MBR <- Memory t3: PC E- (PC) + | IR <- (MBR)
The groupings of micro-operations must follow two simple rules:
The proper sequence of events must be followed. Thus (MAR - (PC))
must precede (MBR - Memory) because the memory read operation
makes use of the address in the MAR.
Conflicts must be avoided. One should not attempt to read to and write
from the same register in a one-time unit, because the results would be
unpredictable. For example, the micro-operations (MBR ¢-- Memory)
and (IR <- MBR) should not occur during the same time unit.
A final point worth noting is that one of the micro-operations involves an
addition. To avoid duplication of circuitry, this addition could be
performed by the ALU. The use of the ALU may involve additional
micro-operations, depending on the functionality of the ALU and the
organization of the processor. Whereas micro-operations are ignored in
that figure, this discussion shows the micro-operations needed to perform
the sub-cycles of the instruction cycle.
Once an instruction is fetched, the next step is to fetch source operands.
Continuing our simple example, let us assume a one-address instruction
format, with direct and indirect addressing allowed. If the instruction
specifies an indirect address, then an indirect cycle must precede the
execute cycle.
t;: MAR < — (IR(Address))

t,» MBR F — Memory

t;: IR(Address) F — (MBR(Address))
The address field of the instruction is transferred to the MAR. This is then
used to fetch the address of the operand. Finally, the address field of the
IR is updated from the MBR, so that it now contains a direct rather than
29

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

an indirect address.

The IR is now in the same state as if indirect addressing had not been used
and it is ready for the execution cycle. We skip that cycle for a moment,
to consider t interrupt cycle.

After the execute cycle, a test is made to determine whether any~:-_abled
interrupts have occurred. If so, the interrupt cycle occurs. The nature of
the cycle varies greatly from one machine to another. We present a very
simple sequeof events, as illustrated in Figure 12.8. We have

ti: MBR E- (PC)

t2: MAR F- Save Address PC F- Routine Address

t3: Memory E- (MBR)

In the first step, the contents of the PC are transferred to the MBR, so that
u- can be saved for return from the interrupt. Then the MAR is loaded
with the add- .at which the contents of the PC are to be saved, and the PC
is loaded with the add to the MAR and PC, respectively. In any case, once
this is done, the final step is to store the MBR, which contains the old
value of the PC, in memory. The processor is now ready to begin the next
instruction cycle.

The fetch, indirect, and interrupt cycles are simple and predictable. Each
involves a small, fixed sequence of micro-operations and, in each case,
the same micro-operations are repeated each time around.

This is not true of the execution cycle. Because of the variety of opcodes,
there are several different sequences of micro-operations that can occur.
Let us consider several hypothetical examples.

First, consider an add instruction:

ADD R1, X

which adds the contents of location X to register R1. The following
sequence of micro-operations might occur:

We begin with the IR containing the ADD instruction. In the first step,
the address portion of the IR is loaded into the MAR. Then the referenced
memory

location is read. Finally, the contents of Rl and MBR are added by the
ALLT.

Again. This is a simplified example. Additional micro-operations may be
required to extract the register reference from the IR and perhaps to stage
the ALt inputs or outputs in some intermediate registers.

Let us look at two more complex examples. A common instruction is
increment and skip if zero:

The content of location X is incremented by . If the result is 0, the next
instruction is skipped. A possible sequence of micro-operations is

ti: MAR <-- (IR(address)) t2: MBR- F- Memory

tz: MBR <-- (MBR) + 1

tu: Memory <- (MBR)

If ((MBR) =0) then (PCF - (PC) + 1)

The new feature introduced here is the conditional action. The PC is
incremented if (MBR) = 0. This test and action can be implemented as

30

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

one micro-operation. Note also that this micro-operation can be
performed during the same time unit during which the updated value in
MBR is stored back in memory.

It is worth pondering the minimal nature of the control unit. The control
unit is the engine that runs the entire computer. It does this based only on
knowing the instructions to be executed and the nature of the results of
arithmetic and logical operations (e.g., positive, overflow, etc.). It never
gets to see the data being processed or the actual results produced. It
controls everything with a few control signals to points within the
processor and a few control signals to the system bus.

Self-Assessment Exercises 1

Fill in the gaps in the sentences below with the most suitable words:

1. are the functional, or atomic, operations of a processor.

2. The fetch cycle consists of steps and micro-
operations.

3. A control unit uses fixed logic circuits while a

control unit stores control signals in memory.
INTERNAL PROCESSOR ORGANIZATION

Figure 8 indicates the use of a variety of data paths. The complexity of
this type of organization should be clear. Using an internal processor bus,
Figure 8 can be rearranged. A single internal bus connects the ALU and
all processor registers.

CPU with Internal Bus.

31

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

| Control
unit
A

IR <O

v

Address
lincs

Data
-
lines

Internal CPU bus

ALL
|
Y
[z -

Figure 8. CPU with internal bus

Gates and control signals are provided for the movement of data onto and
off the bus from each register. Additional control signals control data
transfer to and from the system (external) bus and the operation of the
ALU.

Two new registers, labeled Y and Z, have been added to the organization.
These are needed for the proper operation of the ALU. When an operation
involving two operands is performed, one can be obtained from the
internal bus, but the other must be obtained from another source. The AC
could be used for this purpose, but this limits the flexibility of the system
and would not work with a processor with multiple general-purpose
registers. Register Y provides temporary storage for the other input. The
ALU is a combinatorial circuit with no internal storage. Thus, when
control signals activate an ALU function, the input to the ALU is
transformed into the output. Thus, the output of the ALU cannot be
directly connected to the bus, because this output would feed back to the
input. Register Z provides temporary output storage. With this
arrangement, an operation to add a value from memory to the AC would

32

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

have the following steps:

t1: MAR <- (IR(address))

t2: MBR E- Memory

t3: Y <-(MBR)

t4: Z f- (AC) + (Y)

ts: AC F- (2)

Other organizations are possible, but, in general, some sort of internal bus
or set of internal buses is used. The use of common data paths simplifies
the interconnection layout and the control of the processor. Another
practical reason for the use of an internal bus is to save space.

To illustrate some of the concepts introduced thus far in this chapter, let
us consider the Intel 8085. Its organization is shown in Figure 9. Several
key components that may not be self-explanatory are:
Incrementer/decrementer address latch: Logic that can add 1 to or
subtract 1 from the contents of the stack pointer or program counter. This
saves time by avoiding the use of the ALU for this purpose.

Interrupt control: This module handles multiple levels of interrupt
signals.

Serial 1/0 control: This module interfaces to devices that communicate
1 bit at a time. These signals are the interface between the 8085 processor
and the rest of the system (Figure 10).

INTA RST 65 TRAP

INTR |r{:=n's.5 RST 7.5 SID SOD
Interrupt control Serlal 1'0
contral

£ 3

B-hil internal dala bas

$+ $+ 2 1 3

%) 18] I!!IEI i mun (B} T A
Accmnnli o] TEmp. reg. ﬁlp-llﬁi - “rucurn Brog. | ©rog
Y w | W
I} Fise. E rep.
. 4 w |
instruction Instruction H Fep. L reg. replster
deceder deroder N3] i
and aisd ik e
>|mhlr-¢ T e
cvele wyele (L]
encoding encoling program counber
incrementer’ {1&)
l decremenier
sichil pess el J

Power _E +5V —
{

supply NG — Timing snd control
Xy =
xi_' Clk 1%)
- Gen Control Status DAMA Hesel wildress buffer addiress buffer
v I B EIEEREIE
UKt RDWR ALLE 5, 5 IO/ HILIA el aul
! - Age - Ay Al = Al
Rzl Hold. Restn sddress bus address/data bus

Figure 9. Intel 8085 CPU Block Diagram

33

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

The control unit is identified as having two components labeled (1) in’
decoder and machine cycle encoding and (2) in timing and control. The
timing of processor operations is synchronized by the clock trolled by the
control unit with control signals. Each instruction cycle i, into from one
to five machine cycles; each machine cycle is in turn diN from three to
five states. Each state lasts one clock cycle. During a state. The son
performs one or a set of simultaneous micro-operations as determined
control signals.

The number of machine cycles is fixed for a given instruction but one
instruction to another. Machine cycles are defined to be equivalent cesses.
Thus, the number of machine cycles for an instruction depends on

a bar of times the processor must communicate with external devices. For
e an instruction consists of two 8-bit portions, and then two machine,
cycles fetch the instruction. If that instruction involves a 1-byte memory
or 1/0 then a third machine cycle is required for execution.

Xy —»{]1 Vee
Xy —9{]2 HOLD
Reset out €—{|3 HLDA
SOD w—{]4 CLK (out)
SID —»{|5 Resetin
Trap 4—{|6 Ready
RST 7.5 —»{]7 IO/M
RST 6.5 4—{|8 S
RST 5.5 —»={]9 Vpp
INTR —{]10 RD
INTA t—{]11 3 WR
AD, «»{]12 2 So
AD, w»{]13 2 Ass
AD, wp{|14 2 A
AD, «»{]15 2 Az
AD, wp»{]|16 2 Aqz
ADs <a»{]17 2 Ay
AD; (|18 2 Ao
AD; =»{]19 2 Ag
Vss —{]20 21 Ag

Figure 10. Inter 8085 pin configuration
Figure 11 gives an example of 8085 timing, showing the value of external
control signals. Of course, at the same time, the control unit generates

34

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

internal control signals that control internal data transfers. The diagram
shows the instruction cycle for an OUT instruction. Three machine cycles
(MI, M2, M3) are needed. During the first, the OUT instruction is fetched.
The second machine cycle fetches the second half of the instruction,
which contains the number of the 1/O device selected for output. During
the third cycle, the contents of the AC are written out to the selected
device over the data bus.

The Address Latch Enabled (ALE) pulse signals the start of each machine
cycle from the control unit. The ALE pulse alerts external circuits. During
timing state T1 of machine cycle My, the control unit sets the 10/M signal
to indicate that this is a memory operation. Also, the control unit causes
the contents of the PC to be placed on the

M, (Opcode Fetch) M, (Memory Read)
T, T, Ts Te T, T, T
! F"i‘m High-Order
LAy 20m WM Unspecified 20m Memaory Address
Low-Order T tovw Order
kkol;] 00, — 061 Opcode }’“ ----- 0% - 4!0‘ D-u-Jr-d
Memory Addresa emary Address
S?Z l Status lOllu -O.S,- '.g‘fl m KM -(_J- 1.5, =0 S“&“
T | |

Figure 11. The timing diagram for inter 8085 out instruction

The timing diagram for inter 8085 out instruction addressed memory
module places the contents of the addressed memory vocation on the
address/data bus. The control unit sets the Read Control (RD) signal to
indicate a read, but it waits until T3 to copy the data from the bus. This
gives the memory module time to put the data on the bus and for the signal
levels to stabilize. The final state, T4, is a bus idle state during which the
processor decodes the instruction. The remaining machine cycles proceed
similarly.

Finally, consider a subroutine call instruction. As an example, consider a
branch and-save-address instruction:
35

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

BSA X

The address of the instruction that follows the BSA instruction is saved in
location X, and execution continues at location X + I. The saved address
will later be used for return. This is a straightforward technique for
providing subroutine calls. The following micro-operations suffice:

t,. MAR E- (IR(address)) MBR ~ (PC)

t;: PC <-- (IR(address)) Memory <-- MBR)

t3: PC<- (PC) + |

The address in the PC at the start of the instruction is the address of the
next instruction in sequence. This is saved at the address designated in the
IR. The later address is also incremented to provide the address of the
instruction for the next - instruction cycle.

We have seen that each phase of the instruction cycle can be decomposed
Into a sequence of elementary micro-operations. In our example, there is
one sequence eac= for the fetch, indirect, and interrupt cycles, and, for the
execute cycle, there is one sequence of micro-operations for each opcode.
To complete the picture, we need to tie sequences of micro-operations
together, and this is done in Figure 15.3. We assume a new 2-bit register
called the instruction cycle code (ICC). The ICC designates the state of
the processor in terms of which portion of the cycle it is in:

00: Fetch 01: Indirect

10: Execute 11:

Interrupt

At the end of each of the four cycles, the ICC is set appropriately. The
indirect cycle is always followed by the execute cycle. The interrupt cycle
is always followed by the fetch cycle. For both the fetch and execute
cycles, the next cycle depends on the state of the system.

Of course, this is a simplified example. The flowchart for an actual
processor would be more complex. In any case, we have reached the point
in our discussion in which the operation of the processor is defined as the
performance of a sequence of micro-operations. We can now consider
how the control unit causes this sequence to occur of tbp r of the interrupt-
processing routine. These two actions may each be single micro-
operation. However, because most processors provide multiple tyr and/or
levels of interrupts, it may take one or more additional micro-operations
to obtain the Save Address and the Routine Address before they can be
transfer the events of any instruction cycle can be described as a sequence
of such micro operations. A simple example will be used. In the remainder
of this chapter, we then show how the concept of micro- operations serves
as a guide to the design of the control unit.

THE FETCH CYCLE

We begin by looking at the fetch cycle, which occurs at the beginning of
each instruction cycle and causes an instruction to be fetched from
memory. Four registers are involved:

. Memory address register (MAR): Is connected to the address
lines of the system bus. It specifies the address in memory for a read or

36

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

write operation.

. Memory buffer register (MBR): Is connected to the data lines of
the system bus. It contains the value to be stored in memory or the last
value read from memory.

. Program counter (PC): Holds the address of the next instruction
to be fetched.
. Instruction register (IR): Holds the last instruction fetched.

Let us look at the sequence of events for the fetch cycle from the point of
view of its effect on the processor registers. At the beginning of the fetch
cycle, the address of the next instruction to be executed is in the program
counter (PC); in this case, the address is 1100100. The first step is to move
that address to the memory address register (MAR) because this is the
only register connected to the address lines of the system bus. The second
step is to bring in the instruction. The desired address (in the MAR) is
placed on the bus, the control unit issues a READ command on the control
bus, and the result appears on the data bus and is copied into the memory
buffer register (MBR). We also need to increment the PC by the
instruction length to get ready for the next instruction. Because these two
actions (read word from memory, increment PC) do not interfere with
each other, we can do them simultaneously to save time. The third step is
to move the contents of the MBR to the instruction register (IR). This
frees up the MBR for use during a possible indirect cycle.

Thus, the simple fetch cycle consists of three steps and four micro-
operations. Each micro-operation involves the movement of data into or
out of a register. So long as these movements do not interfere with one
another, several of them can take place during one step, saving time.
Symbolically, we can write this sequence of events as follows:

where 1 is the instruction length. We need to make several comments
about this sequence. We assume that a clock is available for timing
purposes and that it emits regularly spaced clock pulses. Each clock pulse
defines a time unit. Thus, all time units are of equal duration. Each micro-
operation can be performed within the time of a single time unit. The
notation (t1, t2, t3) represents successive time units. In words, we have
First-time unit: Move contents of PC to MAR.

. Second-time unit: Move contents of the memory location
specified by MAR to MBR. Increment by | the contents of the PC.

. Third-time unit: Move contents of MBR to IR.

Note that the second and third micro-operations both take place during
the second time unit. The third micro-operation could have been grouped
with the fourth without affecting the fetch operation:

The groupings of micro-operations must follow two simple rules:

The proper sequence of events must be followed. Thus (MAR - (PC))
must precede (MBR - Memory) because the memory read operation
makes use of the address in the MAR. Conflicts must be avoided. One
should not attempt to read to and write from the same register in a one-
time unit, because the results would be unpredictable. For example, the

37

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

micro-operations (MBR Memory) and (IR E- MBR) should not occur
during the same time unit.

A final point worth noting is that one of the micro-operations involves an
addition. To avoid duplication of circuitry, this addition could be
performed by the ALU. The use of the ALU may involve additional
micro-operations, depending on the functionality of the ALU and the
organization of the processor.

Whereas micro-operations are ignored in that figure, this discussion
shows the micro-operations needed to perform the subcycles of the
instruction cycle.

Once an instruction is fetched, the next step is to fetch source operands.
Continuing our simple example, let us assume a one-address instruction
format, with direct and indirect addressing allowed. If the instruction
specifies an indirect address, then an indirect cycle must precede the
execute cycle.

The address field of the instruction is transferred to the MAR. This is then
used to fetch the address of the operand. Finally, the address field of the
IR is updated from the MBR, so that it now contains a direct rather than
an indirect address.

The IR is now in the same state as if indirect addressing had not been
used, and it is ready for the execute cycle. We skip that cycle for a
moment, to consider the interrupt cycle.

After the execute cycle, a test is made to determine whether any enabled
interrupts have occurred. If so, the interrupt cycle occurs. The nature of
this cycle varies greatly from one machine to another. We have

ti: MBR <-- (PC)

t2: MAR <-- Save Address PC <-- Routine ddress

t3: Memory <-- (MBR)

In the first step, the contents of the PC are transferred to the MBR, so that
they can be saved for return from the interrupt. Then the MAR is loaded
with the address at which the contents of the PC are to be saved, and the
PC is loaded with the address of the start of the interrupt-processing
routine. These two actions may each be a single micro-operation.
However, because most processors provide multiple types and/or levels
of interrupts, it may take one or more additional micro- operations to
obtain the Save Address and the Routine Address before they can be
transferred to the MAR and PC, respectively. In any case, once this is
done, the final step is to store the MBR, which contains the old value of
the PC, in memory. The processor is now ready to begin the next
instruction cycle.

The fetch, indirect, and interrupt cycles are simple and predictable. Each
involves a small, fixed sequence of micro-operations and, in each case,
the same micro-operations are repeated each time around.

This is not true of the execute cycle. Because of the variety of opcodes,
there are various sequences of micro-operations that can occur. Let us
consider several hypothetical examples.

38

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

First, consider an add instruction:

which adds the contents of location X to register R1. The following
sequence of micro-operations might occur:

t1: MAR <-- (IR(address))

t2: MBR <-- Memory

t3: R1 ~- (R1) + (MBR)

We begin with the IR containing the ADD instruction. In the first step,
the address portion of the IR is loaded into the MAR. Then the referenced
memory location is read. Finally, the contents of R1 and MBR are added
by the ALU. Again, this is a simplified example. Additional micro-
operations may be required to extract the register reference from the IR
and perhaps to stage the ALU inputs or outputs in some intermediate
registers.

Let us look at two more complex examples. A common instruction is
increment and skip if zero:

The content of location X is incremented by 1. If the result is 0, the next
instruction is skipped. A possible sequence of micro-operations is

The new feature introduced here is the conditional action. The PC is
incremented if (MBR) = 0. This test and action can be implemented as
one micro-operation. Note also that this micro-operation can be
performed during the same time unit during which the updated value in
MBR is stored back in memory.

Finally, consider a subroutine call instruction. As an example, consider a
branch and-save-address instruction:

BSA X

The address of the instruction that follows the BSA instruction is saved in
location X, and execution continues at location X + I. The saved address
will later be used for return. This is a straightforward technique for
providing subroutine calls. The following micro-operations suffice:

t1: MAR <-- (IR(address)) MBR <-- (PC)

t,;PC~__ (IR(address)) Memory - (MBR)

t3:PC~_(PC)+I

The address in the PC at the start of the instruction is the address of the
next instruction in sequence. This is saved at the address designated in the
IR. The latter address is also incremented to provide the address of the
instruction for the next instruction cycle.

Self-Assessment Exercises 1

Fill in the gaps in the sentences below with the most suitable words:

1. are the functional, or atomic, operations of a processor.
2. The fetch cycle consists of steps and micro-
operations.

39

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

3. A control unit uses fixed logic circuits while a
control unit stores control signals in memory.

THE INSTRUCTION CYCLE

We have seen that each phase of the instruction cycle can be decomposed
into a sequence of elementary micro-operations. In our example, there is
one sequence each for the fetch, indirect, and interrupt cycles, and, for the
execute cycle, there is one sequence of micro-operations for each opcode.
We assume a new 2-bit register called the instruction cycle code (ICC).
The ICC designates the state of the processor in terms of which portion
of the cycle it is in:

00: Fetch

01: Indirect

10: Execute

11: Interrupt

At the end of each of the four cycles, the ICC is set appropriately. The
indirect cycle is always followed by the execute cycle. The interrupt cycle
is always followed by the fetch cycle. For both the fetch and execute
cycles, the next cycle depends on the state of the system.

Of course, this is a simplified example. The flowchart for an actual
processor would be more complex. In any case, we have reached the point
in our discussion in which the operation of the processor is defined as the
performance of a sequence of micro-operations. We can now consider
how the control unit causes this sequence to occur.

32 CONTROL OF THE PROCESSOR

As a result of our analysis in the preceding section, we have decomposed
the behavior or functioning of the processor into elementary operations,
called micro-operations. By reducing the operation of the processor to its
most fundamental level, we can define exactly what it is that the control
unit must cause to happen. Thus, we can define the functional
requirements for the control unit: those functions that the control unit
must perform. A definition of these functional requirements is the basis
for the design and implementation of the control unit.

With the information at hand, the following three-step process leads to a
characterization of the control unit:

1. Define the basic elements of the processor.
2. Describe the micro-operations that the processor performs.
3. Determine the functions that the control unit must perform

to cause the micro-operations to be performed.

We have already performed steps 1 and 2. Let us summarize the results.
First, the basic functional elements of the processor are the following:

. ALU

. Registers

. Internal data paths External data paths

40

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

. Control unit

Some thought should convince you that this is i complete list. The ALU
is the functional essence of the computer. Registers are used to store data
internally on the processor. Some registers contain status information
needed to manage instruction sequencing (e.g., a program status word).
Others contain data that go to or comes from the ALU, memory, and 1/0
modules. Internal data paths are used to move data between registers and
between registers and ALU. External data paths link registers to memory
and 1/0O modules, often utilizing a system bus. The control unit causes
operations to happen within the processor.

The execution of a program consists of operations involving these
processor elements. As we have seen, these operations consist of a
sequence of micro-operations. micro- operations fall into one of the
following categories:

Tdansfer data from one register to another.

Transfer data from a register to an external interface (e.g., system bus).
Transfer data from an external interface to a register.

Frform an arithmetic or logic operation, using registers for input and
output.

All of the micro-operations needed to perform one instruction cycle,
including all of the micro-operations to execute every instruction in the
instruction set, fall into one of these categories.

We can now be somewhat more explicit about how the control unit
functions. The control unit performs two basic tasks:

> Sequencing: The control unit causes the processor to step through
a series of micro-operations in the proper sequence, based on the program
being executed.

> Execution: The control unit causes each micro-operation to be
performed.

The preceding is a functional description of what the control unit does.
The key to how the control unit operates is the use of control signals.
Controls Signals

We have defined the elements that make up the processor (ALU, registers,
data paths) and the micro-operations that are performed. For the control
unit to perform its function, it must have inputs that allow it to determine
the state of the system and outputs that allow it to control the behavior of
the system. These are the external specifications of the control unit.
Internally, the control unit must have the logic required to perform its
sequencing and execution functions. The remainder of this section is
concerned with the interaction between the control unit and the other
elements of the processor.

The inputs are

v Clock: This is how the control unit "keeps time." The control unit
causes one micro-operation (or a set of simultaneous micro-operations) to
be performed for each clock pulse. This is sometimes referred to as the
processor cycle time, or the clock cycle time.

41

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

v Instruction registers: The opcode and addressing mode of the
current instruction are used to determine which micro-operations to
perform during the execute cycle.

v Flags: These are needed by the control unit to determine the status
of the processor and the outcome of previous ALU operations. For
example, for the increment-and-skip-if-zero (ISZ) instruction, the control
unit will increase the PC if the zero flag is set.

Control signals from the control bus: The control bus portion of the
system bus provides signals to the control unit.

The outputs are as follows:

v Control signals within the processor: There are two types: those
that cause data to be moved from one register to another, and those that
activate specific ALU functions.

- Control signals to control bus: These are also of two types: control
signals to memory, and control signals to the 1/O modules.

Three types of control signals are used: those that activate an ALU
function, those that activate a data path, and those that are signals on the
external system bus or other external interface. All of these signals are
ultimately applied directly as binary inputs to individual logic gates.

Let us consider again the fetch cycle to see how the control unit maintains
control. The control unit keeps track of where it is in the instruction cycle.
At a given point, it knows that the fetch cycle is to be performed next. The
first step is to transfer the contents of the PC to the MAR. The control unit
does this by activating the control signal that opens the gates between the
bits of the PC and the bits of the MAR. The next step is to read a word
from memory into the MBR and increment the PC. The control unit does
this by sending the following control signals simultaneously:

A control signal that opens gates, allowing the contents of the MAR onto
the address bus A memory read control signal on the control bus

A control signal opens the gates, allowing the contents of the data bus to
be stored in the MBR

Control signals to logic that add 1 to the contents of the PC and store the
result back to the PC.

Following this, the control unit sends a control signal that opens gates
between the MBR and the IR.

This completes the fetch cycle except for one thing: The control unit must
decide whether to perform an indirect cycle or an execute cycle next. To
decide this, it examines the IR to see if an indirect memory reference is
made.

The indirect and interrupt cycles work similarly. For the execute cycle,
the control unit begins by examining the opcode and based on that,
decides which sequence of micro-operations to perform for the execute
cycle.

To illustrate the functioning of the control unit, let us examine a simple
example. Figure

12 illustrates the example. This is a simple processor with a single

42

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

accumulator
Cs

1.5

e

t Cn

3 l Cio r

Le gl o “ “ —i-» AC

i = o] fo
g

e =

f—
—C, ><—Cy3 : Control
Co o o Signals
Ba ‘
A
R Control °
it o Flags

Clock

Control
signals

Figure 12. Data paths and control signals

(AC). The data paths between elements are indicated. The control paths
for signals emanating from the control unit are not shown, but the
terminations of control signals are labeled Ci and indicated by a circle.
The control unit receives inputs from the clock, the instruction registers,
and flags. With each dock cycle, the control unit reads all of its inputs and
emits a set of control signals. Control signals go to three separate
destinations:

Data paths: The control unit controls the internal flow of data. For
example, on instruction fetch, the contents of the memory buffer register
are transferred to the instruction register. For each path to be controlled,
there is a switch (indicated by a circle in the figure). A control signal from
the control unit temporarily opens the gate to let data pass.

ALU: The control unit controls the operation of the ALU by a set of
control signals. These signals activate various logic circuits and gates
within the ALU.

System bus: The control unit sends control signals out onto the control
lines of the system bus (e.g., memory READ).

The control unit must maintain knowledge of where it is in the instruction
cycle. Using this knowledge, and by reading all of its inputs, the control
unit emits a sequence of control signals that cause micro-operations to
occur. It uses the clock pulses to time the sequence of events, allowing
time between events for signal levels to stabilize. For simplicity, the data
and control paths for incrementing the PC and for loading the fixed
addresses into the PC and MAR are not shown.

t is worth pondering the minimal nature of the control unit. The control

43

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

unit is the engine that runs the entire computer. It does this based only on
knowing the instructions to be executed and the nature of the results of
arithmetic and logical operations (e.g., positive, overflow, etc.). It never
gets to specify the data being processed or the actual results produced. It
controls everything with a few control signals to points within the
processor and a few control signals to the system bus.

Figure 12 indicates the use of a variety of data paths. The complexity of
this type of organization should be clear. Gates and control signals are
provided for the movement of data onto and off the bus from each register.
Additional control signals control data transfer to and from the system
(external) bus and the operation of the ALU.

Two new registers, labeled Y and Z, have been added to the organization.
These are needed for the proper operation of the ALU. When an operation
involving two operands is performed, one can be obtained from the
internal bus, but the other must be obtained from another source. The AC
could be used for this purpose, but this limits the flexibility of the system
and would not work with a processor with multiple general-purpose
registers. Register Y provides temporary storage for the other input. The
ALU is a combinatorial circuit with no internal storage. Thus, when
control signals activate an ALU function, the input to the ALU is
transformed into the output. Thus, the output of the ALU cannot be
directly connected to the bus, because this

the output would feed back to the input. Register Z provides temporary
output storage. With this arrangement, an operation to add a value from
memory to the AC would have the following steps:

t1: MAR <«— (IR (address))

to: MBR <«— Memory

t3: Y +«— (MBR)

ta: Z «— (AC) +(Y)

ts: AC «—— (2

Other organizations are possible, but, in general, some sort of internal bus
or set of internal buses is used. The use of common data paths simplifies
the interconnection layout and the control of the processor. Another
practical reason for the use of an internal bus is to save space.

To illustrate some of the concepts introduced thus far in this unit, let us
consider the Intel 8085. Its organization is shown in Figure 11. Several
key components that may not be self-explanatory are:

w» Incremental decrementer address latch: Logic that can add 1 to
or subtract 1 from the contents of the stack pointer or program counter.
This saves time by avoiding the use of the ALU for this purpose.

o Interrupt control: This module handles multiple levels of

44

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

interruption signals.

o Serial UO control: This module interfaces to devices that
communicate 1 bit at a time.

Table 15.2 describes the external signals into and out of the 8085. These
are linked to the external system bus. These signals are the interface
between the 8085 processor and the rest of the system (Figure 12).

The control unit is identified as having two components labeled (1)
instruction decoder and machine cycle encoding and (2) timing and
control. A discussion of the first component is deferred until the next
section. The essence of the control unit is the timing and control module.
This module includes a clock and accepts as inputs the current instruction
and some external control signals. Its output consists of control signals to
the other components of the processor plus control signals to the external
system bus.

The timing of processor operations is synchronized by the clock and
controlled by the control unit with control signals. Each instruction cycle
is divided into one to five machine cycles; each machine cycle is in turn
divided into three to five states. Each state lasts one clock cycle. During
a state, the processor performs one or a set of simultaneous micro-
operations as determined by the control signals.

The number of machine cycles is fixed for a given instruction but varies
from one instruction to accesses. Thus, the number of machine cycles for
an instruction depends on t lie number of times the processor must
communicate with external devices. For example, if an instruction
consists of two 8-bit portions, then two machine cycles are required to
fetch the instruction. If that instruction involves a 1-byte memory or 1/O
operation, then a third machine cycle is required for execution.

45

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

X, —{1 40 [—— Vece
X, —]2 39[J<¢— HOLD
Reset out <—]3 38 —— HLDA
SOD —|4 37— CLK (out)
SID ——{|5 36[}=—— Reset in
Trap <—{]6 35[]J«—— Ready
RST 7.5 —{|7 34[}—— IO/M
RST 6.5 ~—|8 3BF— S
RST 5.5 ——{|9 32[}=—— Vpp
INTR ——{] 10 31— RD
INTA <—]11 30— WR
ADy <—>{] 12 29— S
AD; —{]13 28— Ajs
AD, —{| 14 27— Ay
AD; ——[] 15 26— Ay
AD, —{| 16 28— Ay
ADs <—>{|17 24— Ay
ADy <—[]18 23[—— Ay
AD; <—{|19 22[F—— Ay
Vss 20 21— Ag

Figure 14. Intel 8085 External Control

Figure 14 gives an example of 8085 timing, showing the value of external
control signals. Of course, at the same time, the control unit generates
internal control signals that control internal data transfers. The diagram
shows the instruction cycle for an OUT instruction. Three machine cycles
(M1, Mz, Mg) are needed. During the first, the OUT instruction is fetched.
The second machine cycle fetches the second half of the instruction,
which contains the number of the 1/O device selected for output. During
the third cycle, the contents of the AC are written out to the selected
device over the data bus.

Pulse signals the start of each machine cycle from the control unit. The
ALE pulse alerts external circuits. During timing state T, of machine cycle
M;, the control unit sets the 10/M signal to indicate that this is a memory
operation. Also, the control unit causes the contents of the PC to be placed
on the address bus (Ais through As) and the address/data bus (ADs through
ADo). With the falling edge of the ALE pulse, the other modules on the
bus store the address. During timing state T», the addressed memory mole

46

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

places the contents of the addressed memory location on the address/data
bus. The control unit sets the Read Control (RD) signal to indicate a read,
but it waits until T3 to copy the data from the bus. This gives the memory
module time to put the data on the bus and for the signal levels to stabilize.
The final state, Ta, is a bus idle state during which the processor decodes
the instruction. The remaining machine cycles proceed similarly.

33 HARDWIRED CONTROL/ IMPLEMENTATION

In a hardwired implementation, the control unit is essentially a state
machine circuit. Its input logic signals are transformed into a set of output
logic signals, which are the control signals.

3.3.1 CONTROL UNIT INPUT

The key inputs are the instruction registers, the clock, flags, and control
bus signals. In the case of the flags and control bus signals, each bit
typically has some meaning (eg overflow). The other two inputs,
however, are not directly useful to the control unit. First, consider the
Instruction register. The control unit makes use of the opcode and will
perform different actions (issue a different combination of control signals)
for different instructions. To simplify the control unit logic, there should
be a unique logic input for each opcode. This function can be performed
by a decoder, which takes an encoded input and produces a single output.
The clock portion of the control unit issues a representative sequence of
pulses. This is useful for measuring the duration of micro-operations.
Essentially the period of the clock pulses must be long enough to allow
the propagation of signals along data paths and through processor
circuitry. However, the control unit emits different control signals at
different time units within the same instruction cycle. Thus, we would like
a counter as input to the control unit with a different control signal being
used for T1, T2, and so forth. At the end of an instruction cycle, the
control unit must feed back to the counter to reinitialize it at T1.

47

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

[Instruction registe:-’

Decoder

Timing °o” Control
generator ° unit » Flags

Clock ————]

@)

=]
<0
L]

Figure 14. The control unit refirements

With these two refinements, the control unit can be depicted as in Figure

14,

To define the hardwired implementation of a control unit, all that remains

is to discuss the internal logic of the control unit that produces output

control signals as a function of its input signals.

Essentially, what must be done is, for each control signal, to derive a

Boolean expression of that signal as a function of the inputs. This is best

explained by example. Let us consider again our simple example

illustrated in Figure 15.5. We saw in Table

15.1 the micro-operation sequences and control signals needed to control

three of the four phases of the instruction cycle.

Let us consider a single control signal, Cs. This signal causes data to be

read from the external data bus into the MBR. Let us define two new

control signals, P and Q, that have the following interpretation:

PQ =00 Fetch Cycle PQ = Ol Indirect Cycle PQ = 10
Execute Cycle PQ =11 Interrupt Cycle

Then the following Boolean expression defines C5:

Cs=PQT2+P.Q.T2

That is, the control signal C5 will be asserted during the second time unit

of both the fetch and indirect cycles.

This expression is not complete. Cs is also needed during the execute

cycle. For our simple example, let us assume that there are only three

instructions that read from memory: LDA, ADD, and AND. Now we can

define Cs as

Cs +P.Q.Tz+P-Q-(LDA+ADD + AND)-T2

This same process could be repeated for every control signal generated by

the processor. The result would be a set of Boolean equations that define

the behavior of the control unit and hence of the processor.

To tie everything together, the control unit must control the state of the

instruction cycle. As was mentioned, at the end of each sub-cycle (fetch,

indirect, execute, interrupt), the control unit issues a signal that causes the

timing generator to reinitialize and issue Ti. The control unit must also set

the appropriate values of P and Q to define the next sub-cycle to be

48

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

performed.

The reader should be able to appreciate that in a modern complex
processor, the number of Boolean equations needed to define the control
unit is very large. The task of implementing a combinatorial circuit that
satisfies all of these equations becomes extremely difficult. The result is
that a far simpler approach, known as microprogramming, is usually used.

34 MICRO PROGRAMMED CONTROL

An alternative to a hardwired control unit is a microprogrammed control
unit in which the logic of the control unit is specified by a microprogram.
A micro program consists of a sequence of instructions in a
microprogramming language. These are very simple instructions that
specify micro-operations.

34.1 MICRO INSTRUCTIONS

Implement a control unit as n interconnection of basic logic elements is
no easy task. The design must include logic for sequencing through
micro-operations for executing micro-operations, interpreting opcodes,
and for making decisions based on ALU flags. An alternative, which has
been used in many CISC processors, is to implement a microprogrammed
control unit.

In addition to the use of control signals, each micro-operation is described
in symbolic notation. This notation looks suspiciously like a
programming language. It is a language, known as a microprogramming
language. Each line describes a set of micro-operations occurring at one
time and is known as a microinstruction. A sequence of instructions is
known as a microprogram or firmware. This latter term reflects the fact
that a microprogram is midway between hardware and software. It is
easier to design in firmware than hardware, but it is more difficult to
write a firmware program than a software program.

How can we use the concept of microprogramming to implement a contra:
unit? Consider that for each micro-operation, all that the control unit is
allowed t 0 do is generate a set of control signals. Thus, for any micro-
operation, each control link: emanating from the control unit is either on
or off. This condition can, of course, be represented by a binary digit for
each control line. So we could construct a contra word in which each bit
represents one control line. Then each micro-operation would be
represented by a different pattern of 1s and Os in the control word.
Suppose we string together a sequence of control words to represent the
sequence of micro-operations performed by the control unit. Next, we
must recognize that the sequence of micro-operations is not fixed.
Sometimes we have an indirect cycle; sometimes we do not. So let us put
our control words in a memory, with each word having a unique address.
Now add an address field to each control word, indicating the location of
the next control word to be executed if a certain condition is true (e.g., the
indirect bit in a memory-reference instruction is 1). Also, add a few bits

49

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

to specify the condition.

The result is known as a horizontal microinstruction. The format of the
microinstruction or control word is as follows. There is one bit for each
internal processor control line and one bit for each system bus control line
There is a condition field indicating the condition under which there
should be a’ branch, and there is a field with the address of the
microinstruction to be executed next when a branch is taken. Such a
microinstruction is interpreted as follows:

. To execute this microinstruction, turn on all the control lines
indicated by a 1 bit; leave off all control lines indicated by a 0 bit. The
resulting control signals will cause one or more micro-operations to be
performed.

o If the condition indicated by the condition bits is false,
execute the next microin- struction in sequence.
. If the condition indicated by the condition bits is true, the next

microinstruction to be executed is indicated in the address field.

Figure 3.4.1b shows how these control words or microinstructions could
be arranged in a control memory. The microinstructions in each routine
are to be executed sequentially. Each routine ends with a branch or jump
instruction indicating where to go next. There is a special execute cycle
routine whose only purpose is to signify that one of the machine
instruction routines (AND, ADD, and so on) is to be executed next,
depending on the current opcode.

The control memory is a concise description of the complete operation of
the control unit. It defines the sequence of micro-operations to be
performed during each cycle (fetch, indirect, execute, interrupt), and it
specifies the sequencing of these cycles. If nothing else, this notation
would be a useful device for documenting the functioning of a control unit
for a particular computer. But it is more than that. It is also a way of
implementing the control unit.

The control memory contains a program that describes the behavior of the
control unit. It follows that we could implement the control unit by simply
executing that program. The set of micro instructions is stored in the
control memory. The control address register contains the address of the
next microinstruction to be read. When a microinstruction is read from
the control memory, it is transferred to a control buffer register the left-
hand portion of that register connects to the control lines emanating from
the control unit. Thus, reading a microinstruction from the control
memory is the same as executing that microinstruction. The third element
shown in the figure is a sequencing unit that loads the control address
register and issues a read command.

The control unit functions as follows:

1. To execute an instruction, the sequencing logic unit issues a READ
command to the control memory.
2. The word whose address is Specified in the control address

register is read into the control buffer register.

50

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

3. The content of the control buffer register generates control
signals and next address information for the sequencing logic unit.
4, The sequencing logic unit loads a new address into the control

address register based on the next-address information from the control
buffer register and the ALU flags.

All this happens during one clock pulse.

The last step just listed needs elaboration. After each microin- struction,
the sequencing logic unit loads a new address into the control address
register. Depending on the value of the ALU flags and the control buffer
register, one of three decisions is made:

Depending on the value of the ALU flags and the control buffer register,
one of three decisions is made:

. Get the next instruction: Add 1 to the control address register.

. Jump to a new routine based on a jump microinstruction: Load the
address field of the control buffer register into the control address register.
. Jump to a machine instruction routine: Load the control address

register based on the opcode in the IR.

342 ADVANTAGES AND DISADVANTAGES

The principal advantage of the use of micro-programming to implement
a control unit is that it simplifies the design of the control unit. Thus it is
both cheaper and less error-prone to implement. A hard-wired control unit
must contain complex logic for sequencing through the many micro-
operation s of the instructions cycle. On the other hand the decoders and
sequencing logic unit of a microprogrammed control unit are very simple
pieces of logic.

The principal disadvantage of a micro programmed unit is that it will be
somewhat slower than a hardwired unit of comparable technology.
Despite this, microprogramming is the dominant technique for
implementing control units in pure CISC architecture due to its ease of
implementation. RISC processors with their simpler instruction format,
typically use hardwired control units

The two basic tasks performed by a microprogrammed control unit are as
follows:

- Micro instruction sequencing: Get the next control signals needed
to execute the micro instruction. In designing a control unit, these tasks
must be considered together because both affect the format of the micro-
instruction and the timing of the control unit.

Self-Assessment Exercises 2

Answer the following questions by choosing the most suitable option:

1. What is the main advantage of microprogrammed control units?
A. They are faster than hardwired units
B. They are easier to design and modify
C. They use less power
D. They are more reliable

51

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

2. Which type of processors typically use hardwired control units?
A. CISC processors
B. RISC processors
C. Both CISC and RISC
D. Neither CISC nor RISC

40 CONCLUSION

Micro- operations are the functional or atomic operations of a processor.
The concepts of micro- operation serve as a guide to the design of the
control unit.

50 SUMMARY

Each instruction cycle is made up of a set of micro-operations that
generate control signals. Execution is accomplished by the effect of these
control signals, emanating from the control unit to the ALU registers and
system interconnection structure. Finally, an approach to the
implementation of the control unit referred to as hard-wired
implementation is presented. Furthermore, the concept of micro-
operations leads to an elegant and powerful approach to control unit
implementation, known as micro programming. Besides each instruction
in the machine language of the processor is translated into a sequence of
lower-level control unit instructions referred to as micro-instructions and
the process of translation is referred to as microprogramming.

6.0 TUTOR- MARKED ASSIGNMENT

1. What is the relationship between instructions and micro
operations?

2. Briefly what is meant by a hard-wired implementation of a control
unit?

3. What are the basic tasks performed by a micro programmed
control unit?

4, What is the difference between a hard-wired implementation and

a micro-programmed implementation of a control unit?
7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1. Micro-operations

2. Three, four

3. Hardwired, microprogrammed

Self-Assessment Exercise 2
1.B
2.B

7.0 REFERENCES/FURTHER READING

Carter J. Microprocessor Architecture and Microprogramming — Upper
saddle River N. J Prentice HALL, 1996

52

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Heath, S. (2014). Microprocessor Architectures: RISC, CISC and DSP.
Elsevier.

Rafiqguzzaman, M. (2005). Fundamentals of digital logic and
microcomputer design. John Wiley & Sons.

Rafiquzzaman, M. (2021). Microprocessors and microcomputer-based
system design. CRC press.

Chakraborty, P. (2020). Computer Organisation and Architecture:
Evolutionary Concepts, Principles, and Designs. Chapman and
Hall/CRC.

Null, L. (2023). Essentials of Computer Organization and Architecture.
Jones & Bartlett Learning.

53

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

MODULE 3 CPU ORGANIZATION

UNIT 1: CPU Organization
UNIT 2: The Arithmetic and Logic Unit
UNIT 3: Control Unit

UNIT 1 CPU ORGANIZATION

1.0 Introduction

2.0 Objectives

3.0 Main content

3.1 History of CPU

3.2 How the CPU work

4.0 Conclusion

50 Summary

6.0 Tutor marked assignment
7.0 References/further reading

1.0 INTRODUCTION

The full form of the CPU is the Central Processing Unit. It is the brain of
the computer. All types of data processing operations and all important
functions of a computer are performed by the CPU. It helps input and
output devices communicate with each other and perform their respective
operations. It also stores data that are input, intermediate results in
between processing, and instructions. In this unit, we introduce the basic
CPU organization and its instructions. This module also shows how a
CPU is made, what’s inside a CPU, how computer memory works, and
how a CPU works.

A Central Processing Unit is the most important component of a computer
system. A CPU is hardware that performs data input/output, processing
and storage functions for a computer system. A CPU can be installed into
a CPU socket. These sockets are generally located on the motherboard.
CPU can perform various data processing operations. CPU can store data,
instructions, programs, and intermediate results.

2.0 OBJECTIVES
At the end of the unit, you should be able to

. Recognize the history of Intel microprocessors

o Recall how a CPU is made from sand to chip

o List what’s inside a CPU

o Demonstrate knowledge of computer memory integrating with a
CPU

3.1 History of CPU

Since 1823, when Baron Jons Jakob Berzelius discovered silicon, which
is still the primary component used in the manufacture of CPUs today, the
history of the CPU has experienced numerous significant turning points.

54

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

The first transistor was created by John Bardeen, Walter Brattain, and
William Shockley in December 1947. in 1958, the first working
integrated circuit was built by Robert Noyce and Jack Kilby.

The Intel 4004 was the company’s first microprocessor, which it unveiled
in 1971. Ted Hoff’s assistance was needed for this. When Intel released
its 8008 CPU in 1972, Intel 8086 in 1976, and Intel 8088 in June 1979, it
contributed to yet another win. The Motorola 68000, a 16/32-bit
processor, was also released in 1979. The Sun also unveiled the SPARC
CPU in 1987. AMD unveiled the AM386 CPU series in March 1991.

In January 1999, Intel introduced the Celeron 366 MHZ and 400 MHz
processors. AMD back in April 2005 with its first dual-core processor.
Intel also introduced the Core 2 Dual processor in 2006. Intel released the
first Core i5 desktop processor with four cores in September 2009.

In January 2010, Intel released other processors like the Core 2 Quad
processor Q9500, the first Core i3 and i5 mobile processors, first Core i3
and i5 desktop processors.

In June 2017, Intel released the Core i9 desktop processor, and Intel
introduced its first Core 19 mobile processor In April 2018.

Different Parts of CPU

Now, the CPU consists of 3 major units, which are:

) Memory or Storage Unit

o Control Unit

o ALU (Arithmetic Logic Unit)

Let us now look at the block diagram of the computer:

Control Unit

—

INPUT L

!

CPU

Here, in this diagram, the three major components are also shown. So, let
us discuss these major components:

55

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Memory or Storage Unit

As the name suggests this unit can store instructions, data, and
intermediate results. The memory unit is responsible for transferring
information to other units of the computer when needed. It is also known
as an internal storage unit or the main memory or the primary storage
or Random Access Memory (RAM) as all these are storage devices.

Its size affects speed, power, and performance. There are two types of
memory in the computer, which are primary memory and secondary
memory. Some main functions of memory units are listed below:

Data and instructions are stored in memory units which are required for
processing.

It also stores the intermediate results of any calculation or task when they
are in process.

The final results of processing are stored in the memory units before these
results are released to an output device for giving the output to the user.
All sorts of inputs and outputs are transmitted through the memory unit.
Control Unit

As the name suggests, a control unit controls the operations of all parts of
the computer but it does not carry out any data processing operations.
Executing already stored instructions, It instructs the computer by using
the electrical signals to instruct the computer system. It takes instructions
from the memory unit and then decodes the instructions after that it
executes those instructions. So, it controls the functioning of the
computer. Its main task is to maintain the flow of information across the
processor. Some main functions of the control unit are listed below:
Controlling of data and transfer of data and instructions is done by the
control unit among other parts of the computer.

The control unit is responsible for managing all the units of the computer.
The main task of the control unit is to obtain the instructions or data that
IS input from the memory unit, interpret them, and then direct the
operation of the computer according to that.

The control unit is responsible for communication with Input and output
devices for the transfer of data or results from memory.

The control unit is not responsible for the processing of data or storing
data.

ALU (Arithmetic Logic Unit)

ALU (Arithmetic Logic Unit) is responsible for performing arithmetic
and logical functions or operations. It consists of two subsections, which
are:

Arithmetic Section

Logic Section

Now, let us know about these subsections:

Arithmetic Section: By arithmetic operations, we mean operations like
addition, subtraction, multiplication, and division, and all these operation
and functions are performed by ALU. Also, all the complex operations
are done by making repetitive use of the mentioned operations by ALU.

56

https://www.geeksforgeeks.org/random-access-memory-ram/

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Logic Section: By Logical operations, we mean operations or functions
like selecting, comparing, matching, and merging the data, and all these
are performed by ALU.
Note: CPU may contain more than one ALU and it can be used for
maintaining timers that help run the computer system.
What Does a CPU Do?
The main function of a computer processor is to execute instruction and
produce an output. CPU work are Fetch, Decode and Execute are the
fundamental functions of the computer.
Fetch: the first CPU gets the instruction. That means binary numbers that
are passed from RAM to CPU.
Decode: When the instruction is entered into the CPU, it needs to decode
the instructions. with the help of ALU(Arithmetic Logic Unit) the process
of decode begins.
Execute: After decode step the instructions are ready to execute
Store: After execute step the instructions are ready to store in the
memory.
Types of CPU
We have three different types of CPU:
Single Core CPU: The oldest type of computer CPUs is single core CPU.
These CPUs were used in the 1970s. these CPUs only have a single core
that preform different operations. This means that the single core CPU
can only process one operation at a single time. single core CPU is not
suitable for multitasking.
Dual-Core CPU: Dual-Core CPUs contain a single Integrated Circuit
with two cores. Each core has its cache and controller. These controllers
and cache are work as a single unit. dual core CPUs can work faster than
the single-core processors.
Quad-Core CPU: Quad-Core CPUs contain two dual-core processors
present within a single integrated circuit (IC) or chip. A quad-core
processor contains a chip with four independent cores. These cores read
and execute various instructions provided by the CPU. Quad Core CPU
increases the overall speed for programs. Without even boosting the
overall clock speed it results in higher performance.
Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable
option:

1. What are the three major components of a CPU?
A. Input, Output, Storage
B. Memory Unit, Control Unit, ALU
C. Hardware, Software, Firmware
D. Registers, Cache, Bus

2. Which CPU type has multiple independent cores?
A. Single Core CPU

57

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

B. Dual-Core CPU
C. Quad-Core CPU
D. BothBand C

3. What does the CPU do during the "Fetch" step?

A. Executes the instruction

B. Stores the result

C. Gets the instruction from memory

D. Decodes the instruction
3.2 How the CPU work
Inside every computer is a central processing unit and inside every CPU
are small components that carry out all the instructions for every program
you run. These components include AND gates, OR gates, NOT gates,
Clock, Multiplexer, ALU (arithmetic logic unit), etc. Data bus performs
data transfer within a CPU and a computer. As shown in Fig. 8-1, the CPU
Is organized with a Program Counter (PC), Instruction Register (IR),
Instruction Decoder, Control Unit, Arithmetic Logic Unit (ALU),
Registers, and Buses. PC holds the address of the next instruction to be
fetched from Memory. IR holds each instruction after it is fetched from
Memory. Instruction Decoder decodes and interprets the contents of the
IR, and splits a whole instruction into fields for the Control Unit to
interpret. The Control Unit coordinates all activities within the CPU, has
connections to all parts of the CPU, and includes a sophisticated timing
circuit. ALU carries out arithmetic and logical operations, exemplified by
addition, comparison, and Boolean AND/OR/NOT operations. Within
ALU, input registers hold the input operands and output register holds the
result of an ALU operation. Once completing ALU operation, the result
Is copied from the ALU output register to its final destination.

Central Processing Unit (CPU) Memory

e ettt 1
: General gg : Address
| Registers 1 s000
| R1 - 1 5001
1 I Address Bus
I R2 [$002
1 1
' ALU ! |
| Output o 1 i
| Registers <—| Input Register 1]]= a : !
| T !
' | Input Register 2 I 5 | '

nput Regis! 2 !
: — £ Data Bus i

I 1
: — () |
1 1 1
- - :
[} ! |
1 ! |
! | Instruction Decoder I‘—| Instruction Register |‘— : 1
! l & 11 | Control Bus s3rD
| . | $3FF
\ | Control Unit | | Read/Write $3FF
[}

58

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Figure 15. The CPU Organization

General-purpose registers are available for the programmer to use in their
programs within the CPU. Typically, the programmer tries to maximize
the use of these registers to speed program execution. Busses serve as
communication highways for passing information on the computer.

The computer has memory which similarly memorizes data we remember
past events. The register is the fastest memory which is located within the
CPU of the computer.

Add

The result from the ALU or memoryis
-7\ written back into the register file

Data

Register #
PC |+ Address Instruction Registers Address
Register #
Instruction Data
Memory Register # Memory
g . ~—={ Data

———

i Instruction s fetched i Register operandsused by an instruction
eg add $tl, $t2, $t3 eg $tl, $t2, $t3 | result, ora compare !

I 1
I 1
b - o | S i

Figure 16. The CPU Overview

Figure 16 shows the CPU overview which consists of PC, instruction
memory, registers, ALU, and Data memory. PC always holds the address
of the next instruction to be fetched from Memory. Instruction, e.g. add
$t1, $t2, $t3, is fetched into instruction memory. Register operands are
used by an instruction in registers, where $t1 is the first source operand,
$t2 is the second source operand, and $t3 is the storage of the result. ALU
executes an arithmetic operation, e.g. Sum of $t1 and $t2. The result from
the ALU or memory is written back into the register file ($t3). In the
figure, ALU results and the output of data memory can’t just join wires
together. The red dash-dot line can be designed with the multiplexer to
put the wires together.

The following figure shows CPU control with multiplexers. The first
multiplexer controls what value replaces the PC (PC + 4 or the branch
destination address), where the Mux is controlled by the AND gate with
the Zero output of ALU and a control signal. The second multiplexer
steers the output of the ALU or the output of the data memory. The third
one determines whether the second ALU input is from the registers or

59

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

from the offset field of the instruction (for a load or store).

40 CONCLUSION

The Central Processing Unit (CPU) is often referred to as the brain of the
computer. It executes instructions from computer programs by
performing basic arithmetic, logical, control, and input/output (1/O)
operations specified by the instructions. The CPU has a critical role in
determining the speed and capability of a computer system.

50 SUMMARY

The Central Processing Unit (CPU) is the primary component of a
computer responsible for interpreting and executing instructions. Often
referred to as the computer's brain, it consists of the Arithmetic Logic Unit
(ALU), which performs calculations and logical operations, and the
Control Unit (CU), which directs all operations. The CPU fetches
instructions from memory, decodes them, executes them, and writes back
the results. Its performance is influenced by factors such as clock speed,
number of cores, and cache size. Modern CPUs are designed for a range
of devices, from high-performance servers to power-efficient mobile
devices, continually advancing in power efficiency, integration, and
parallel processing capabilities.

6.0 TUTOR- MARKED ASSIGNMENT

1. List and briefly explain parts of the CPU.

2. List the two most common types of control unit
7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1
1.B
2.D
3.C

7.0 REFERENCES/FURTHER READING

Catanzaro B. Multiprocessor system Architecture Mountain View CA,
Sun sift pres 1994

Null, L. (2023). Essentials of Computer Organization and Architecture.
Jones & Bartlett Learning.

Liu, Z., Lin, Y., & Sun, M. (2023). Representation learning for natural
language processing (p. 521). Springer Nature.

60

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

UNIT 2 THE ARITHMETIC AND LOGIC UNIT

1.0 Introduction

2.0 Objectives

3.0 Main content

3.1 The General Concepts of CPU
3.2 Configurations of the ALU

3.3 Operations Performed by ALU
4.0 Conclusion

50 Summary

6.0 Tutor marked assignment

7.0 References/further

1.0 Introduction

The Arithmetic Logic Unit (ALU) is a fundamental component of the
Central Processing Unit (CPU) that is responsible for executing all
arithmetic and logical operations within a computer. It performs essential
arithmetic operations such as addition, subtraction, multiplication, and
division, as well as logical operations including AND, OR, NOT, and
XOR. Additionally, the ALU handles bitwise operations, which involve
the manipulation of individual bits within a binary number. These
operations are critical for various computational tasks, such as
calculations, data manipulation, and decision-making processes. The
ALU consists of input registers that store the operands, operational logic
that performs the calculations, and result storage that temporarily holds
the output before it is transferred to other CPU components or memory.
Beyond basic calculations, the ALU plays a crucial role in comparison
operations, such as determining whether numbers are equal, greater than,
or less than each other. This capability is essential for implementing
control flow in programs, enabling the CPU to make decisions based on
conditional statements and execute different instructions based on those
conditions. The efficiency and speed of the ALU directly impact the
overall performance of the CPU, as it processes the core computations
required for running applications and executing instructions. By
facilitating both arithmetic and logical operations, the ALU enables the
CPU to perform complex tasks and drive the functionality of the
computer.

2.0 Objectives

At the end of this unit, you should be able to

- Understand the general concepts of the Arithmetic and Logic Unit
- Explain the ALU of the computer system.

3.1 The General Concepts of CPU

In the computer system, ALU is a main component of the central
processing unit, which stands for arithmetic logic unit and performs
arithmetic and logic operations. It is also known as an integer unit (1U)

61

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

which is an integrated circuit within a CPU or GPU, which is the last
component to perform calculations in the processor. It can perform all
processes related to arithmetic and logic operations such as addition,
subtraction, and shifting operations, including Boolean comparisons
(XOR, OR, AND, and NOT operations). Also, binary numbers can
accomplish mathematical and bitwise operations. The arithmetic logic
unit is split into AU (arithmetic unit) and LU (logic unit). The operands
and code used by the ALU tell it which operations have to be performed
according to input data. When the ALU completes the processing of input,
the information is sent to the computer's memory.

Machine Cycle

Step 2: Decode instructions

into commands Step 3: Execute commands

Step 1: Fetchinstruction
from memory

Step 4: Store results
in memory

Except for performing calculations related to addition and subtraction,
ALUs handle the multiplication of two integers as they are designed to
execute integer calculations; hence, its result is also an integer. However,
division operations commonly may not be performed by ALU as division
operations may produce a result in a floating-point number. Instead, the
floating-point unit (FPU) usually handles the division operations; other
non-integer calculations can also be performed by FPU.

Additionally, engineers can design the ALU to perform any type of
operation. However, ALU becomes costlier as the operations become
more complex because ALU destroys more heat and takes up more space
in the CPU. This is the reason for making powerful ALUs by engineers,
which provides the surety that the CPU is fast and powerful as well.

The calculations needed by the CPU are handled by the arithmetic logic
unit (ALU); most of the operations among them are logical. If the CPU is
made more powerful, which is made based on how the ALU is designed.
Then it creates more heat and takes more power or energy. Therefore,
there must be moderation between how complex and powerful ALU is
and not be costly. This is the main reason the faster CPUs are costlier;
hence, they take up much power and destroy more heat. Arithmetic and

62

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

logic operations are the main operations that are performed by the ALU,;
it also perform bit-shifting operations.

Although the ALU is a major component in the processor, the ALU's
design and function may be different in the different processors. For case,
some ALUs are designed to perform only integer calculations, and some
are for floating-point operations. Some processors include a single
arithmetic logic unit to perform operations, and others may contain
numerous ALUs to complete calculations. The operations performed by
ALU are:

Logical Operations: The logical operations consist of NOR, NOT, AND,
NAND, OR, XOR, and more.

Bit-Shifting Operations: It is responsible for displacement in the
locations of the bits to the right or left by a certain number of places that
Is known as a multiplication operation.

Arithmetic Operations: Although it performs multiplication and
division, this refers to bit addition and subtraction. But multiplication and
division operations are more costly to make. In the place of multiplication,
addition can be used as a substitute and subtraction for division.
Arithmetic Logic Unit (ALU) Signals

A variety of input and output electrical connections are contained by the
ALU, which led to casting the digital signals between the external
electronics and ALU.

ALU input gets signals from the external circuits, and in response,
external electronics get outputs signals from ALU.

Data: Three parallel buses are contained by the ALU, which include two
input and output operand. These three buses handle the number of signals,
which are the same.

Opcode: When the ALU is going to operate, it is described by the
operation selection code what type of operation an ALU is going to
perform arithmetic or logic operation.

Status

Output: The results of the ALU operations are provided by the status
outputs in the form of supplemental data as they are multiple signals.
Usually, status signals like overflow, zero, carry out, negative, and more
are contained by general ALUs. When the ALU completes each
operation, the external registers contain the status output signals. These
signals are stored in the external registers that led to making them
available for future ALU operations.

Input: When ALU once operates, the status inputs allow ALU to access
further information to complete the operation successfully. Furthermore,
stored carry-out from a previous ALU operation is known as a single
"carry-in" bit.

63

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

- m m
Opcode Output

3.2 Configurations of the ALU

The description of how ALU interacts with the processor is given below.
Every arithmetic logic unit includes the following configurations:
Instruction Set Architecture

Accumulator

Stack

Register to Register

Register Stack

Register Memory

Accumulator

The intermediate result of every operation is contained by the
accumulator, which means Instruction Set Architecture (ISA) is not more
complex because it is only required to hold one bit.

Generally, they are much faster and less complex but to make the
Accumulator more stable; additional codes need to be written to fill it with
proper values. Unluckily, with a single processor, it is very difficult to
find Accumulators to execute parallelism. An example of an Accumulator
is the desktop calculator.

Stack

Whenever the latest operations are performed, these are stored on the
stack that holds programs in top-down order, which is a small register.
When the new programs are added to execute, they push to put the old
programs.

Register-Register Architecture

It includes a place for 1 destination instruction and 2 source instructions,
also known as a 3-register operation machine. This Instruction Set
Architecture must be longer for storing three operands, 1 destination, and
2 sources. After the end of the operations, writing the results back to the
Registers would be difficult, and also the length of the word should be
longer. However, it can cause more issues with synchronization if the
write-back rule is followed at this place.

The MIPS component is an example of the register-to-register

64

Result

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Architecture. For input, it uses two operands, and for output, it uses a third
distinct component. The storage space is hard to maintain as each needs a
distinct memory; therefore, it has to be premium at all times. Moreover,
it might be difficult to perform some operations.

Register - Stack Architecture

Generally, the combination of Register and Accumulator operations is
known as Register-Stack Architecture. The operations that need to be
performed in the register-stack Architecture are pushed onto the top of the
stack. And its results are held at the top of the stack. With the help of
using the Reverse polish method, more complex mathematical operations
can be broken down. Some programmers, to represent operands, use the
concept of a binary tree. It means that the reverse polish methodology can
be easy for these programmers, whereas it can be difficult for other
programmers. To carry out Push and Pop operations, there is a need to be
new hardware created.

Self-Assessment Exercises 1

Fill in the gaps in the sentences below with the most suitable words:

1. The ALU is responsible for performing and
operations.
2. ALU stands for Unit.

3. The three main types of operations performed by ALU are
arithmetic operations, logical operations, and operations.

Register and Memory

In this architecture, one operand comes from the register, and the other
comes from the external memory as it is one of the most complicated
architectures. The reason behind this is that every program might be very
long as they require to be held in full memory space. Generally, this
technology is integrated with Register-Register Register technology and
practically cannot be used separately.

ALUs, in addition to doing addition and subtraction calculations, also
handle the process of multiplication of two integers because they are
designed to perform integer calculations; thus, the result is likewise an
integer. Division operations, on the other hand, are frequently not done
by ALU since division operations can result in a floating-point value.
Instead, division operations are normally handled by the floating-point
unit (FPU), which may also execute other non-integer calculations.
Engineers can also design the ALU to do any operation they choose.
However, as the operations become more sophisticated, ALU becomes
more expensive since it generates more heat as well as takes up more
space on the CPU. Therefore, engineers create powerful ALUs, ensuring

65

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

that the CPU is both quick and powerful.

The ALU performs the computations required by the CPU; most of the
operations are logical. If the CPU is built more powerful, it will be
designed based on the ALU. Then it generates more heat and consumes
more energy or power. As a result, there must be a balance between how
intricate and strong ALU is and how much it costs. The primary reason
why faster CPUs are more expensive is that they consume more power
and generate more heat due to their ALUs. The ALU’s major functions
are arithmetic and logic operations, as well as bit-shifting operations.

3.3 Operations Performed by ALU

Although the ALU is a critical component of the CPU, the design and
function of the ALU may vary amongst processors. Some ALUSs, for
example, are designed solely to conduct integer calculations, whereas
others are built to perform floating-point computations. Some processors
have a single arithmetic logic unit that performs operations, whereas
others have many ALUs that conduct calculations. ALU’s operations are
as follows:

1. Arithmetic Operators: It refers to bit subtraction and addition, despite
the fact that it does multiplication and division. Multiplication and
division processes, on the other hand, are more expensive to do. Addition
can be used in place of multiplication, while subtraction can be used in
place of division.

2. Bit-Shifting Operators: It is responsible for a multiplication
operation, which involves shifting the locations of a bit to the right or left
by a particular number of places.

3. Logical Operations: These consist of NOR, AND, NOT, NAND,
XOR, OR, and more.

ALU Signals

The ALU contains a variety of electrical input and output connections,
which result in the digital signals being cast between the ALU and the
external electronics. External circuits send signals to the ALU input, and
the ALU sends signals to the external electronics.

Opcode: The operation selection code specifies whether the ALU will
conduct arithmetic or a logic operation when it performs the operation.
Data: The ALU contains three parallel buses, each with two input and
output operands. These three buses are in charge of the same amount of
signals.

Advantages of ALU

ALU has various advantages, which are as follows:

o It supports parallel architecture and applications with high
performance.

. It can get the desired output simultaneously and combine integer
and floating-point variables.

o It has the capability of performing instructions on a very large set
and has a high range of accuracy.

) Two arithmetic operations in the same code like addition and

66

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

multiplication or addition and subtraction, or any two operands can be
combined by the ALU. For case, A+B*C.

o Throughout the whole program, they remain uniform, and they are
spaced in a way that they cannot interrupt parts in between.

) In general, it is very fast; hence, it provides results quickly.

) There are no sensitivity issues and no memory wastage with ALU.
o They are less expensive and minimize the logic gate requirements.
Disadvantages of ALU

The disadvantages of ALU are discussed below:
) With the ALU, floating variables have more delays, and the
designed controller is not easy to understand.

o The bugs would occur in our result if memory space were definite.
. It is difficult to understand amateurs as their circuit is complex;
also, the concept of pipelining is complex to understand.

o A proven disadvantage of ALU is that there are irregularities in
latencies.

o Another demerit is rounding off, which impacts accuracy.

Self-Assessment Exercises 2
Answer the following questions by choosing the most suitable option:

1. Which of the following is NOT an advantage of ALU?
A. High processing speed
B. Support for parallel architecture
C. Unlimited memory capacity
D. No sensitivity issues

2. What type of operations does ALU handle for floating-point numbers?
A. All floating-point operations
B. Limited floating-point operations
C. No floating-point operations
D. Only division operations

4.0 CONCLUSION

An arithmetic logic unit (ALU) is a key component of a computer’s
central processor unit. The ALU performs all arithmetic and logic
operations that must be performed on instruction words. The ALU is split
into two parts in some microprocessor architectures: the AU and the LU.
ALU conducts arithmetic and logic operations. It is a major component
of the CPU in a computer system. An integer unit (1U) is just an integrated
circuit within a GPU or GPU that performs the last calculations in the
processor. It can execute all arithmetic and logic operations, including
Boolean comparisons, such as subtraction, addition, and shifting (XOR,
OR, AND, and NOT operations). Binary numbers can also perform
bitwise and mathematical operations. AU (arithmetic unit) and LU (logic
unit) are two types of arithmetic logic units. The ALU’s operands and

67

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

code instruct it on which operations to perform based on the incoming
data. When the ALU has finished processing the data, it sends the result
to the computer memory.

50 SUMMARY

The ALU is a crucial component of the CPU responsible for executing
arithmetic operations like addition, subtraction, multiplication, and
division, as well as logical operations. It also handles bitwise operations
and comparisons, enabling the CPU to make decisions based on
conditional statements. Comprising input registers for operands,
operational logic for performing calculations, and result storage, the
ALU's efficiency directly influences the CPU's overall performance. By
facilitating essential computations and decision-making processes, the
ALU plays a key role in the execution of programs and the overall
functionality of the computer.

6.0 TUTOR MARKED ASSIGNMENT
1. What are some of the potential advantages of the ALU?
2. What are the chief characteristics of the ALU?

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1
1. Arithmetic, logical

2. Arithmetic Logic

3. Bit-shifting

Self-Assessment Exercise 2

1.C

2.B

7.0 References/ Further reading

Herlihy, M., Shavit, N., Luchangco, V., & Spear, M. (2020). The art of
multiprocessor programming. Newnes.

Jayanti, S. V. (2023). Simple, Fast, Scalable, and Reliable Multiprocessor
Algorithms. Massachusetts Institute of Technology.

Brandenburg, B. B. (2022). Multiprocessor real-time locking protocols.
In Handbook of Real-Time Computing (pp. 347-446). Singapore:
Springer Nature Singapore.

68

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

UNIT 3 THE CONTROL UNIT
1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 The Control Unit

3.2 Types of Control Unit

3.3 Advantages and Disadvantages of Control Unit
4.0 Conclusion

50 Summary

6.0 Tutor- Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

The control unit (CU) is a critical component of a computer's central
processing unit (CPU), responsible for directing the operation of the
processor. It orchestrates the fetching, decoding, and execution of
instructions by generating appropriate control signals to the various
subsystems within the CPU. The CU ensures that the data flows correctly
between the CPU, memory, and input/output devices, and it regulates the
execution of instructions by controlling the timing and sequencing of
operations. By interpreting the instructions in a program, the control unit
determines which arithmetic, logic, or control operation is to be
performed next and manages the data paths accordingly.

The control unit can be designed using either hardwired logic or
microprogramming. A hardwired control unit uses fixed logic circuits to
control signals, which makes it fast but less flexible and more difficult to
modify or update. In contrast, a microprogrammed control unit stores
control signals in a memory-based control store, allowing for easier
modifications and updates at the cost of some performance. The CU plays
a crucial role in the overall function and efficiency of the CPU, ensuring
that all operations are performed correctly and in the proper sequence,
thereby enabling the execution of complex computational tasks.

20 OBJECTIVES
At the end of this unit, you should be able to:

. Explain the control unit.
. Discuss the types of control units.
. Understand how the control unit works.

A Central Processing Unitis the most important component of a
computer system. A control unit is a part of the CPU. A control unit
controls the operations of all parts of the computer but it does not carry
out any data processing operations.

What is a Control Unit?

The Control Unit is the part of the computer’s central processing unit
(CPU), which directs the operation of the processor. It was included as

69

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

part of the Von Neumann Architecture by John von Neumann. It is the
responsibility of the control unit to tell the computer’s memory,
arithmetic/logic unit, and input and output devices how to respond to the
instructions that have been sent to the processor. It fetches internal
instructions of the programs from the main memory to the processor
instruction register, and based on this register contents, the control unit
generates a control signal that supervises the execution of these
instructions. A control unit works by receiving input information which it
converts into control signals, which are then sent to the central processor.
The computer’s processor then tells the attached hardware what
operations to perform. The functions that a control unit performs are
dependent on the type of CPU because the architecture of the CPU varies
from manufacturer to manufacturer.

Examples of devices that require a CU are:

Control Processing Units(CPUs)

Graphics Processing Units(GPUS)

Instruction Register

l Control signals
Within CPU Control
R JE— . Bus
Flags Control signals from
Control __ Control bus
Unit)
Clock ———— = _

Control signals to
Control bus

Block Diagram of the Control Unit

Functions of the Control Unit

. It coordinates the sequence of data movements into, out of, and
between a processor’s many sub-Units.

. It interprets instructions.

. It controls data flow inside the processor.

. It receives external instructions or commands which it converts to
a sequence of control signals.

. It controls many execution units (i.e. ALU, data buffers,
and registers) contained within a CPU.

. It also handles multiple tasks, such as fetching, decoding,

execution handling, and storing results.
3.2 Types of Control Units

There are two types of control units:
Hardwired

70

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Micro programmable control unit.

Hardwired Control Unit

In the Hardwired control unit, the control signals that are important for
instruction execution control are generated by specially designed
hardware logical circuits, in which we cannot modify the signal
generation method without a physical change of the circuit structure. The
operation code of an instruction contains the basic data for control signal
generation. In the instruction decoder, the operation code is decoded. The
instruction decoder constitutes a set of many decoders that decode
different fields of the instruction opcode.

As a result, few output lines going out from the instruction decoder
obtains active signal values. These output lines are connected to the inputs
of the matrix that generates control signals for execution units of the
computer. This matrix implements logical combinations of the decoded
signals from the instruction opcode with the outputs from the matrix that
generates signals representing consecutive control unit states and with
signals coming from the outside of the processor, e.g. interrupt signals.
The matrices are built in a similar way as a programmable logic arrays.

Instruction register
Opcode Address field

¥
Rectangular signal In:tmctmn
From quartz ecoder
generator
\ y .
Control signal
- »| Next control |——»| €ontrol ™ Forother
Timing State Signal L computer
unit generator Generation units
matrix
TFIags and T External
variables signals

Block diagram of a hardwired control unit of a computer

Control signals for an instruction execution have to be generated not in a
single time point but during the entire time interval that corresponds to
the instruction execution cycle. Following the structure of this cycle, the
suitable sequence of internal states is organized in the control unit. A
number of signals generated by the control signal generator matrix are
sent back to inputs of the next control state generator matrix.

This matrix combines these signals with the timing signals, which are

71

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

generated by the timing unit based on the rectangular patterns usually
supplied by the quartz generator. When a new instruction arrives at the
control unit, the control units is in the initial state of new instruction
fetching. Instruction decoding allows the control unit enters the first state
relating execution of the new instruction, which lasts as long as the timing
signals and other input signals as flags and state information of the
computer remain unaltered.

A change of any of the earlier mentioned signals stimulates the change of
the control unit state. This causes that a new respective input is generated
for the control signal generator matrix. When an external signal appears,
(e.g. an interrupt) the control unit takes entry into the next control state
which is the state concerned with the reaction to this external signal (e.g.
interrupt processing).

The values of flags and state variables of the computer are used to select
suitable states for the instruction execution cycle. The last states in the
cycle are control states that commence fetching the next instruction of the
program: sending the program counter content to the main memory
address buffer register and next, reading the instruction word to the
instruction register of the computer. When the ongoing instruction is the
stop instruction that ends program execution, the control unit enters an
operating system state, in which it waits for the next user directive.
Micro Programmable control unit

Microinstruction From main
address memary
register

Control Store Opcode |Address |

(microprogram) . Instruction
| register

Y Microinstruction
Operation par‘c[control |Address | register

TS State
i == Microins +—— |nformation

- S generation +—— rrom
Unit la—— executive
Control

units
signals

Microprogrammed control unit with a single level control store

The fundamental difference between these unit structures and the
structure of the hardwired control unit is the existence of the control store
that is used for storing words containing encoded control signals

72

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

mandatory for instruction execution. In microprogrammed control units,
subsequent instruction words are fetched into the instruction register in a
normal way. However, the operation code of each instruction is not
directly decoded to enable immediate control signal generation but it
comprises the initial address of a microprogram contained in the control
store.

With a single-level control store: In this, the instruction opcode from
the instruction register is sent to the control store address register. Based
on this address, the first microinstruction of a microprogram that
interprets the execution of this instruction is read to the microinstruction
register. This microinstruction contains in its operation part encoded
control signals, normally as few bit fields. In a set microinstruction field
decoder, the fields are decoded. The microinstruction also contains the
address of the next microinstruction of the given instruction
microprogram and a control field used to control activities of the
microinstruction address generator. The last mentioned field decides
the addressing mode (addressing operation) to be applied to the address
embedded in the ongoing microinstruction. In microinstructions along
with conditional addressing mode, this address is refined by using the
processor condition flags that represent the status of computations in the
current program.

Microinstruction From main
address memaory
register
] Opcode | Address
Control Store | Op | |
(microprogram)) LrEzid Instruction
register

i Microinstruction
[Operation part| control | Address | register

*| Microinstruction | State
Information

> s4g . 1 From
Unit . executive
units
Decoder[™ Nanoinstruction Memory

i

Control signals encoded in nanoinstruction words

Microprogrammed control unit with a two-level control store

The last microinstruction in the instruction of the given microprogram is
the microinstruction that fetches the next instruction from the main
memory to the instruction register.

With a two-level control store: In this, in a control unit with a two-level
control store, besides the control memory for microinstructions, a nano-

73

https://www.geeksforgeeks.org/addressing-modes/

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

instruction memory is included. In such a control unit, microinstructions
do not contain encoded control signals. The operation part of
microinstructions contains the address of the word in the nano-instruction
memory, which contains encoded control signals. The nano-instruction
memory contains all combinations of control signals that appear in
microprograms that interpret the complete instruction set of a given
computer, written once in the form of nano-instructions. In this way,
unnecessary storing of the same operation parts of microinstructions is
avoided. In this case, microinstruction words can be much shorter than
with the single-level control store. It gives a much smaller size in bits of
the microinstruction memory and, as a result, a much smaller size of the
entire control memory. The microinstruction memory contains the control
for the selection of consecutive microinstructions, while those control
signals are generated on the basis of nano-instructions. In nano-
instructions, control signals are frequently encoded using a 1 bit/ 1 signal
method that eliminates decoding.

Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. What is the primary function of the Control Unit?
A. To perform arithmetic calculations
B. To store data permanently
C. To control the operations of all parts of the computer
D. To provide input/output interfaces

2. Which type of control unit is more flexible but slower?
A. Hardwired Control Unit
B. Micro-programmed Control Unit
C. Both are equally flexible
D. Neither is flexible

3. What type of computers typically use hardwired control units?
A. CISC computers
B. RISC computers
C. Both CISC and RISC
D. Mainframe computers only

Differences between Hardwired Control unit and Micro-programmed
Control unit

There are differences between Micro-programmed CU and Hardwired
CU, which are described as follows:

74

IFT 212

Hardwired Control Unit

With the help of a hardware
circuit, we can implement the
hardwired control unit. In other
words, we can say that it is a
circuitry approach.

The hardwired control unit uses
the logic circuit so that it can

generate the control signals,
which are required for the
processor.

In this CU, the control signals are
going to be generated in the form
of hard wired. That's why it is
very difficult to modify the
hardwired control unit.

In the form of logic gates,
everything has to be realized in
the hardwired control unit. That's
why this CU is more costly
compared to the micro-
programmed control unit.

The complex instructions cannot
be handled by a hardwired
control unit because when we

design a circuit for this
instruction, it will become
complex.

Because of the hardware

implementation, the hardwired
control unit is able to use a
limited number of instructions.

The hardwired control unit is
used in those types of computers
that also use the RISC (Reduced
instruction Set Computers).

In the hardwired control unit, the

COMPUTER ARCHITECTURE AND ORGANIZATION

Micro-programmed Control Unit

While with the help of
programming, we can implement
the micro-programmed control
unit.

The micro-programmed CU uses
microinstruction so that it can
generate the control signals.
Usually, control memory is used to
store these microinstructions.

It is very easy to modify the micro-
programmed control unit because
the modifications are going to be
performed only at the instruction
level.

The micro-programmed control
unit is less costly compared to the
hardwired CU because this control
unit only requires the
microinstruction to generate the
control signals.

The micro-programmed control
unit is able to handle the complex
instructions.

The micro-programmed control
unit is able to generate control
signals for many instructions.

The micro-programmed control
unit is used in those types of
computers that also use the CISC
(Complex instruction Set
Computers).

In this CU, the microinstructions

75

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

hardware is used to generate only are used to generate control signals.
the required control signals. That's why this CU is slower than
That's why this control unit is the hardwired control unit.

faster compared to the micro-

programmed control unit.

Some Other differences between Micro-programmed control unit and
Hardwire control unit

Now we will describe these differences on the basis of some parameters,
such as speed, cost, modification, instruction decoder, control memory,
etc. These differences are described as follows:

Speed

In the hardwired control unit, the speed of operations is very fast. In
contrast, the micro-programmed control unit needs frequent memory
access. So the speed of operation of a micro-programmed control unit is
slow.

Modification

If we want to do some modifications to the Hardwired control unit, we
have to redesign the entire unit. In contrast, if we want to do some
modification in the micro-programmed control unit, we can do that just
by changing the microinstructions in the control memory. In this case, the
more flexible control unit is a micro-programmed control unit.

Cost

The implementation of a Hardwire control unit is very much compared to
the Micro-programmed control unit. In this case, the micro-programmed
control unit will save our money at the time of implementation.
Handling Complex Instructions

If we try to handle the complex instructions with the help of a hardwired
control unit, it will be very difficult for us to handle them. But if we try
to handle the complex instructions with the help of a micro-programmed
control unit, it will be very easy for us to handle them. In this case, also,
the Micro-programmed control unit is better.

Instruction decoding

In the hardwired control unit, if we want to perform instruction decoding,
it will be very difficult. But if we do the same thing in a micro-
programmed control unit, it will be very easy for us.

Instruction set size

A small instruction set is used by the hardwired CU. On the other hand, a
large instruction set is used by the micro-programmed control unit.
Control Memory

The hardwired control unit does not use the control memory to generate
the control signals, but the micro-programmed CU needs to use the
control memory to generate the control signals.

76

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Applications

The hardwired control unit is used in those types of processors that use a
simple instruction set. This set is called a Reduced Instruction Set
Computer. On the other hand, a micro-programmed control unit is used
in those types of processors that basically use a complex instruction set.
This set is called a Complex Instruction Set Computer.

Advantages of a Well-Designed Control Unit

Efficient instruction execution: A well-designed control unit can
execute instructions more efficiently by optimizing the instruction
pipeline and minimizing the number of clock cycles required for each
instruction.

Improved performance: A well-designed control unit can improve the
performance of the CPU by increasing the clock speed, reducing the
latency, and improving the throughput.

Support for complex instructions: A well-designed control unit can
support complex instructions that require multiple operations, reducing
the number of instructions required to execute a program.

Improved reliability: A well-designed control unit can improve the
reliability of the CPU by detecting and correcting errors, such as memory
errors and pipeline stalls.

Lower power consumption: A well-designed control unit can reduce
power consumption by optimizing the use of resources, such as registers
and memory, and reducing the number of clock cycles required for each
instruction.

Better branch prediction: A well-designed control unit can improve
branch prediction accuracy, reducing the number of branch
mispredictions and improving performance.

Improved scalability: A well-designed control unit can improve the
scalability of the CPU, allowing it to handle larger and more complex
workloads.

Better support for parallelism: A well-designed control unit can better
support parallelism, allowing the CPU to execute multiple instructions
simultaneously and improve overall performance.

Improved security: A well-designed control unit can improve the
security of the CPU by implementing security features such as address
space layout randomization and data execution prevention.

Lower cost: A well-designed control unit can reduce the cost of the CPU
by minimizing the number of components required and improving
manufacturing efficiency.

Disadvantages of a Poorly-Designed Control Unit

Reduced performance: A poorly designed control unit can reduce the
performance of the CPU by introducing pipeline stalls, increasing the
latency, and reducing the throughput.

Increased complexity: A poorly designed control unit can increase the
complexity of the CPU, making it harder to design, test, and maintain.
Higher power consumption: A poorly designed control unit can

77

https://www.geeksforgeeks.org/difference-between-register-and-memory/
https://www.geeksforgeeks.org/difference-between-register-and-memory/

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

increase power consumption by inefficiently using resources, such as
registers and memory, and requiring more clock cycles for each
instruction.

Reduced reliability: A poorly designed control unit can reduce the
reliability of the CPU by introducing errors, such as memory errors and
pipeline stalls.

Limitations on instruction set: A poorly designed control unit may limit
the instruction set of the CPU, making it harder to execute complex
instructions and limiting the functionality of the CPU.

Inefficient use of resources: A poorly designed control unit may
inefficiently use resources such as registers and memory, leading to
wasted resources and reduced performance.

Limited scalability: A poorly designed control unit may limit the
scalability of the CPU, making it harder to handle larger and more
complex workloads.

Poor support for parallelism: A poorly designed control unit may limit
the ability of the CPU to support parallelism, reducing the overall
performance of the system.

Security vulnerabilities: A poorly designed control unit may introduce
security vulnerabilities, such as buffer overflows or code injection attacks.
Higher cost: A poorly designed control unit may increase the cost of the
CPU by requiring additional components or increasing the manufacturing
complexity.

40 CONCLUSION

In the world of computer architecture, the Control Unit plays a pivotal
role in ensuring the effective and efficient functioning of modern
computing systems. Delving into the intricacies of this vital component
allows you to gain insight into its core functions, applications, and
different types. This article will explore the various aspects of the Control
Unit, including its definition and key role in computer architecture,
managing the data flow, and its relation to the Central Processing Unit
(CPU). Moreover, the article will navigate the different types of Control
Units, such as Hardwired and Microprogrammed Control Units,
discussing their advantages, disadvantages, flexibility, and adaptability.
You will also discover the crucial differences between these Control Unit
types and understand how to choose the appropriate one for your
computer system. Furthermore, it will examine the diverse applications of
the Control Unit in various contexts of computer science, such as personal
computers, laptops, modern devices, and the rapidly evolving Internet of
Things (1oT). By understanding the importance and role of the Control
Unit, you can appreciate its impact on shaping the future of computing
technology.

50 SUMMARY

A control unit, or CU, is circuitry within a computer’s processor that
directs operations. It instructs the memory, logic unit, and both output and
input devices of the computer on how to respond to the program’s

78

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

instructions. CPUs and GPUs are examples of devices that use control
units.

The Control Unit has a significant role within a computer system, which
includes:

. Fetching instructions from memory

. Decoding instructions to determine what operation to perform

. Controlling and coordinating the execution of instructions

. Managing data flow between various units of the computer

. Monitoring and regulating the synchronization of input and output
devices

6.0 TUTOR MARKED ASSIGNMENT

1. Explain Control Unit

2. List and briefly explain the types of control unit
7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1

1.C

2.B

3.B

7.0 References/ further reading

Ellis, G. (2012). Control system design guide: using your computer to
understand and diagnose feedback controllers. Butterworth-Heinemann.
Astrom, K. J., & Wittenmark, B. (2013). Computer-controlled systems:
theory and design. Courier Corporation.

Gopal, M. (2008). Control systems: principles and design. McGraw-Hill
Science, Engineering & Mathematics.

Wolf, M. (2012). Computers as components: principles of embedded
computing system design. Elsevier.

Clark, R. N. (1996). Control system dynamics. Cambridge University
Press.

79

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

MODULE 4 INSTRUCTION SET ARCHITECTURE
Unit 1 General Overview of Instruction Set Architecture
Unit 2 Instruction Cycle

UNIT 1 GENERAL OVERVIEW OF INSTRUCTION SET
ARCHITECTURE

CONTENT

1.0 Introduction

2.0 Objectives

3.0 Main content

3.1 Instruction Set

3.2 Taxonomy

3.3 Addressing Mode

3.4 Intruction Format

4.0 Conclusion

50 Summary

6.0 Tutor marked assignment
7.0 References/ Further Reading

1.0 INTRODUCTION

An Instruction Set Architecture (ISA) is part of the abstract model of a
computer that defines how the CPU is controlled by the software. The
ISA acts as an interface between the hardware and the software,
specifying both what the processor is capable of doing as well as how it
gets done. The ISA provides the only way through which a user is able to
interact with the hardware. It can be viewed as a programmer’s manual
because it’s the portion of the machine that’s visible to the assembly
language programmer, the compiler writer, and the application
programmer.

The ISA defines the supported data types, the registers, how the hardware
manages main memory, key features (such as virtual memory), which
instructions a microprocessor can execute, and the input/output model of
multiple ISA implementations. The ISA can be extended by adding
instructions or other capabilities, or by adding support for larger addresses
and data values.

20 OBJECTIVES

At the end of this unit, you should be able to

Understand the importance of the instruction set architecture,

Discuss the features that need to be considered when designing the
instruction set architecture.

80

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

3.1 Instruction Set Overview

We’ve already seen that the computer architecture course consists of two
components — the instruction set architecture and the computer
organization itself. The ISA specifies what the processor is capable of
doing and the ISA, how it gets accomplished. So the instruction set
architecture is the interface between your hardware and the software. The
only way that you can interact with the hardware is the instruction set of
the processor. To command the computer, you need to speak its language
and the instructions are the words of a computer’s language and the
instruction set is basically its vocabulary. Unless you know the
vocabulary and you have a very good vocabulary, you cannot gain good
benefits out of the machine. ISA is the portion of the machine which is
visible to either the assembly language programmer or a compiler writer
or an application programmer. It is the only interface that you have,
because the instruction set architecture is the specification of what the
computer can do and the machine has to be fabricated in such a way that
it will execute whatever has been specified in your ISA. The only way
that you can talk to your machine is through the ISA. This gives you an
idea of the interface between the hardware and software.

Let us assume you have a high-level program written in C which is
independent of the architecture on which you want to work. This high-
level program has to be translated into an assembly language program
which is specific to a particular architecture. Let us say you find that this
consists of a number of instructions like LOAD, STORE, ADD, etc.,
where, whatever you had written in terms of high-level language now
have been translated into a set of instructions which are specific to the
specific architecture. All these instructions that are being shown here are
part of the instruction set architecture of the MIPS architecture. These are
all English like and this is not understandable to the processor because the
processor is after all made up of digital components which can understand
only zeros and ones. So this assembly language will have to be finely
translated into machine language, object code which consists of zeros and
ones. So the translation from your high-level language to your assembly
language and the binary code will have to be done with the compiler and
the assembler.

We shall look at the instruction set features, and see what will go into the
zeros and ones and how to interpret the zeros and ones, as data,
instructions, or addresses. The ISA that is designed should last through
many implementations, it should have portability, it should have
compatibility, it should be used in many different ways so it should have
generality and it should also provide convenient functionality to
other levels. The taxonomy of ISA is given below.

3.2 Taxonomy

ISAs differ based on the internal storage in a processor. Accordingly, the
ISA can be classified as follows, based on where the operands are stored
and whether they are named explicitly or implicitly:

81

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Single accumulator organization, which names one of the general
purpose registers as the accumulator and uses it to necessarily store one
of the operands. This indicates that one of the operands is implied to be
in the accumulator and it is enough if the other operand is specified along
with the instruction.
General register organization, which specifies all the operands explicitly.
Depending on whether the operands are available in memory or registers,
it can be further classified as
— Register — register, where registers are used for storing operands. Such
architectures are also called load—store architectures, as only load and
store instructions can have memory operands.

— Register — memory, where one operand is in a register and the
other one in memory.

— Memory — memory, where all the operands are specified as

memory operands.
Stack organization, where the operands are put into the stack and the
operations are carried out on the top of the stack. The operands are
implicitly specified here.
Let us assume you have to perform the operation A = B + C, where all
three operands are memory operands. In the case of an accumulator-based
ISA, where we assume that one of the general-purpose registers is being
designated as an accumulator and one of the operands will always be
available in the accumulator, you have to initially load one operand into
the accumulator and the ADD instruction will only specify the operand’s
address. In the GPR-based ISA, you have three different classifications.
In the register memory ISA, One operand has to be moved into any
register and the other one can be a memory operand. In the register—
register ISA, both operands will have to be moved to two registers and
the ADD instruction will only work on registers. The memory—memory
ISA permits both memory operands. So you can directly add. In a stack-
based ISA, you’ll have to first of all push both operands onto the stack
and then simply give an add instruction which will add the top two
elements of the stack and then store the result in the stack. So you can see
from these examples that you have different ways of executing the same
operation, and it obviously depends upon the ISA. Among all these ISAs,
It is the register — register ISA that is very popular and used in all RISC
architectures.

We shall now look at what are the different features that need to be
considered when designing the instruction set architecture. They are:
Types of instructions (Operations in the Instruction set)

Types and sizes of operands

Addressing Modes

Addressing Memory

Encoding and Instruction Formats

Compiler-related issues

82

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

First of all, you have to decide on the types of instructions, i.e. what are

the various instructions that you want to support in the ISA. The tasks
carried out by a computer program consisting of a sequence of small steps,
such as multiplying two numbers, moving data from a register to a
memory location, testing for a particular condition like zero, reading a
character from the input device or sending a character to be displayed to
the output device, etc.. A computer must have the following types of
instructions:

. Data transfer instructions

o Data manipulation instructions

) Program sequencing and control instructions
o Input and output instructions

Data transfer instructions perform data transfer between the various
storage places in the computer system, viz. registers, memory, and 1/O.
Since, both the instructions as well as data are stored in memory, the
processor needs to read the instructions and data from memory. After
processing, the results must be stored in memory. Therefore, two basic
operations involving the memory are needed,
namely, Load (or Read or Fetch) and Store (or Write). The Load
operation transfers a copy of the data from the memory to the processor
and the Store operation moves the data from the processor to memory.
Other data transfer instructions are needed to transfer data from one
register to another or from/to 1/0 devices and the processor.

Data manipulation instructions perform operations on data and indicate
the computational capabilities for the processor. These operations can be
arithmetic operations, logical operations or shift operations. Arithmetic
operations include addition (with and without carry), subtraction (with
and without borrow), multiplication, division, increment, decrement and
finding the complement of a number. The logical and bit manipulation
instructions include AND, OR, XOR, Clear carry, set carry, etc. Similarly,
you can perform different types of shift and rotate operations.

We generally assume a sequential flow of instructions. That is,
instructions that are stored in consequent locations are executed one after
the other. However, you have program sequencing and control
instructions that help you change the flow of the program. This is best
explained with an example. Consider the task of adding a list
of n numbers. A possible sequence is given below.

Move DATAL, RO

Add DATAZ2, RO

Add DATA3, RO

Add DATAN, RO

Move RO, SUM

The addresses of the memory locations containing the n numbers are
symbolically given as DATAL, DATAZ2, .., DATAnN, and a separate Add
instruction is used to add each Databer to the contents of register RO. After

83

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

all the numbers have been added, the result is placed in memory location
SUM. Instead of using a long list of Add instructions, it is possible to
place a single Add instruction in a program loop, as shown below:

Move N, R1

Clear RO

LOOP Determine address of “Next” number and add “Next” number to
RO

Decrement R1

Branch > 0, LOOP

Move RO, SUM

The loop is a straight-line sequence of instructions executed as many
times as needed. It starts at location LOOP and ends at the instruction
Branch>0. During each pass through this loop, the address of the next list
entry is determined, and that entry is fetched and added to RO. The address
of an operand can be specified in various ways, as will be described in the
next section. For now, you need to know how to create and control a
program loop. Assume that the number of entries in the list, n, is stored in
memory location N. Register R1 is used as a counter to determine the
number of times the loop is executed. Hence, the contents of location N
are loaded into register R1 at the beginning of the program. Then, within
the body of the loop, the instruction, Decrement R1 reduces the contents
of R1 by 1 each time through the loop. The execution of the loop is
repeated as long as the result of the decrement operation is greater than
zero.

You should now be able to understand branch instructions. This type of
instruction loads a new value into the program counter. As a result, the
processor fetches and executes the instruction at this new address, called
the branch target, instead of the instruction at the location that follows the
branch instruction in sequential address order. The branch instruction can
be conditional or unconditional. An unconditional branch instruction
does a branch to the specified address irrespective of any condition.
A conditional branch instruction causes a branch only if a specified
condition is satisfied. If the condition is not satisfied, the PC is
incremented in the normal way, and the next instruction in sequential
address order is fetched and executed. In the example above, the
instruction Branch>0 LOOP (branch if greater than 0) is a conditional
branch instruction that causes a branch to locate LOOP if the result of the
immediately preceding instruction, which is the decremented value in
register R1, is greater than zero.

This means that the loop is repeated as long as there are entries in the list
that are yet to be added to RO. At the end of the nth pass through the loop,
the Decrement instruction produces a value of zero, and, hence, branching
does not occur. Instead, the Move instruction is fetched and executed. It
moves the final result from RO into memory location SUM. Some ISAs

84

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

refer to such instructions as Jumps. The processor keeps track of
information about the results of various operations for use by subsequent
conditional branch instructions. This is accomplished by recording the
required information in individual bits, often called condition code flags.
These flags are usually grouped together in a special processor register
called the condition code register or status register. Individual condition
code flags are set to 1 or cleared to 0, depending on the outcome of the
operation performed. Some of the commonly used flags are: Sign, Zero,
Overflow, and Carry.

The call and return instructions are used in conjunction with subroutines.
A subroutine is a self-contained sequence of instructions that performs a
given computational task. During the execution of a program, a
subroutine may be called to perform its function many times at various
points in the main program. Each time a subroutine is called, a branch is
executed to the beginning of the subroutine to start executing its set of
instructions. After the subroutine has been executed, a branch is made
back to the main program, through the return instruction. Interrupts can
also change the flow of a program. A program interrupt refers to the
transfer of program control from a currently running program to another
service program as a result of an external or internally generated request.
Control returns to the original program after the service program is
executed.

The interrupt procedure is, in principle, quite similar to a subroutine call
except for three variations: (1) The interrupt is usually initiated by an
internal or external signal apart from the execution of an instruction (2)
the address of the interrupt service program is determined by the hardware
or from some information from the interrupt signal or the instruction
causing the interrupt; and (3) an interrupt procedure usually stores all the
information necessary to define the state of the CPU rather than storing
only the program counter. Therefore, when the processor is interrupted, it
saves the current status of the processor, including the return address, the
register contents and the status information called the Processor Status
Word (PSW), and then jumps to the interrupt handler or the interrupt
service routine. Upon completing this, it returns to the main program.
Interrupts are handled in detail in the next unit on Input / Output.

Input and Output instructions are used for transferring information
between the registers, memory, and the input/output devices. It is possible
to use special instructions that exclusively perform 1/O transfers, or use
memory — related instructions itself to do 1/O transfers.

Suppose you are designing an embedded processor that is meant to be
performing a particular application, then definitely you will have to bring
instructions that are specific to that particular application. When you’re
designing a general-purpose processor, you only look at including all
general types of instructions. Examples of specialized instructions may be
media and signal processing-related instructions, say vector type of
instructions which try to exploit the data level parallelism, where the same

85

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

operation of addition or subtraction is going to be done on different data
and then you may have to look at saturating arithmetic operations,
multiply and accumulator instructions.

The data types and sizes indicate the various data types supported by the
processor and their lengths. Common operand types —Half word (16 bits),
Word (32 bits), Single Precision Floating Point (1 Word), Double
Precision Floating Point (2 Words), Integers — two’s complement binary
numbers, Characters usually in ASCII, Floating point numbers following
the IEEE Standard 754 and Packed and unpacked decimal numbers.
Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. What does ISA stand for?
A. Internal System Architecture
B. Instruction Set Architecture
C. Integrated Software Application
D. Input/Storage/Access

2. Which ISA type is used in RISC architectures?
A. Accumulator-based
B. Stack-based
C. Register-register (Load-store)
D. Memory-memory

3. What are the main categories of instructions in an ISA?
A. Data transfer, data manipulation, program control, 1/0
B. Fetch, decode, execute, store
C. Read, write, calculate, display
D. Input, process, output, feedback

3.3 Addressing Modes

The operation field of an instruction specifies the operation to be
performed. This operation must be executed on some data that is given
straight away or stored in computer registers or memory words. The way
the operands are chosen during program execution is dependent on
the addressing mode of the instruction. The addressing mode specifies a
rule for interpreting or modifying the address field of the instruction
before the operand is referenced. In this section, you will learn the most
important addressing modes found in modern processors.

Computers use addressing mode techniques to accommodate one or both
of the following:

1. To give programming versatility to the user by providing such facilities
as pointers to memory, counters for loop control, indexing of data, and
program relocation.

2. To reduce the number of bits in the addressing field of the instruction.

86

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

When you write programs in a high-level language, you use constants,
local and global variables, pointers, and arrays. When translating a high-
level language program into assembly language, the compiler must be
able to implement these constructs using the facilities provided in the
instruction set of the computer in which the program will be run. The
different ways in which the location of an operand is specified in an
instruction are referred to as addressing modes. Variables and constants
are the simplest data types and are found in almost every computer
program. In assembly language, a variable is represented by allocating a
register or a memory location to hold its value.

Register mode — The operand is the contents of a processor register; the
name (address) of the register is given in the instruction.

Absolute mode — The operand is in a memory location; the address of
this location is given explicitly in the instruction. This is also
called Direct.

Address and data constants can be represented in assembly language
using the Immediate mode.

Immediate mode — The operand is given explicitly in the instruction.
For example, the instruction Move 200immediate, RO places the value
200 in register RO. Clearly, the Immediate mode is only used to specify
the value of a source operand. A common convention is to use the sharp
sign (#) in front of the value to indicate that this value is to be used as an
Immediate operand. Hence, we write the instruction above in the form
Move #200, RO. Constant values are used frequently in high-level
language programs. For example, the statement A = B + 6 contains the
constant 6. Assuming that A and B have been declared earlier as variables
and may be accessed using the Absolute mode, this statement may be
compiled as follows:

Move B, R1
Add #6, R1
Move R1, A
Constants are also used in assembly language to increment a counter, test
for some bit pattern, and so on.

Indirect mode — In the addressing modes that follow, the instruction
does not give the operand or its address explicitly. Instead, it provides
information from which the memory address of the operand can be
determined. We refer to this address as the effective address (EA) of the
operand. In this mode, the effective address of the operand is the contents
of a register or memory location whose address appears in the instruction.
We denote indirection by placing the name of the register or the memory
address given in the instruction in parentheses. For example, consider the
instruction, Add (R1), RO. To execute the Add instruction, the processor
uses the value in register R1 as the effective address of the operand. It
requests a read operation from the memory to read the contents of this
location. The value read is the desired operand, which the processor adds

87

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

to the contents of register RO. Indirect addressing through a memory
location is also possible as indicated in the instruction Add (A), RO. In
this case, the processor first reads the contents of memory location A, then
requests a second read operation using this value as an address to obtain
the operand. The register or memory location that contains the address of
an operand is called a pointer. Indirection and the use of pointers are
important and powerful concepts in programming. Changing the contents
of location A in the example fetches different operands to add to register

RO.

Index mode — The next addressing mode you learn provides a different
kind of flexibility for accessing operands. It is useful in dealing with lists
and arrays. In this mode, the effective address of the operand is generated
by adding a constant value (displacement) to the contents of a register.
The register used may be either a special register provided for this
purpose, or may be any one of the general-purpose registers in the
processor. In either case, it is referred to as an index register. We indicate
the Index mode symbolically as X(Ri), where X denotes the constant
value contained in the instruction and Ri is the name of the register
involved. The effective address of the operand is given by EA = X + [Ri].
The contents of the index register are not changed in the process of
generating the effective address. In an assembly language program, the
constant X may be given either as an explicit number or as a symbolic
name representing a numerical value. When the instruction is translated
into machine code, the constant X is given as a part of the instruction and
Is usually represented by fewer bits than the word length of the computer.
Since X is a signed integer, it must be sign-extended to the register length
before being added to the contents of the register.

Relative mode — The above discussion defined the Index mode using
general-purpose processor registers. A useful version of this mode is
obtained if the program counter, PC, is used instead of a general-purpose
register. Then, X (PC) can be used to address a memory location that is X
bytes away from the location presently pointed to by the program counter.
Since the addressed location is identified as “relative” to the program
counter, which always identifies the current execution point in a program,
the name Relative mode is associated with this type of addressing. In this
case, the effective address is determined by the Index mode using the
program counter in place of the general-purpose register Ri. This
addressing mode is generally used with control flow instructions.
Though this mode can be used to access data operands. But, its most
common use is to specify the target address in branch instructions. An
instruction such as Branch > 0 LOOP, which we discussed earlier, causes
program execution to go to the branch target location identified by the
name LOOP if the branch condition is satisfied. This location can be
computed by specifying it as an offset from the current value of the
program counter. Since the branch target may be either before or after the
branch instruction, the offset is given as a signed number. Recall that

88

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

during the execution of an instruction, the processor increments the PC to
point to the next instruction. Most computers use this updated value in
computing the effective address in the Relative mode.

The two modes described next are useful for accessing data items in
successive locations in the memory.

Autoincrement mode — The effective address of the operand is the
contents of a register specified in the instruction. After accessing the
operand, the contents of this register are automatically incremented to
point to the next item in a list. We denote the Autoincrement mode by
putting the specified register in parentheses, to show that the contents of
the register are used as the effective address, followed by a plus sign to
indicate that these contents are to be incremented after the operand is
accessed. Thus, the Autoincrement mode is written as (Ri)+.
Autodecrement mode — As a companion for the Autoincrement mode,
another useful mode accesses the items of a list in the reverse order. In
the autodecrement mode, the contents of a register specified in the
Instruction are first automatically decremented and are then used as the
effective address of the operand. We denote the Autodecrement mode by
putting the specified register in parentheses, preceded by a minus sign to
indicate that the contents of the register are to be decremented before
being used as the effective address. Thus, we write — (Ri). In this mode,
operands are accessed in descending address order. You may wonder why
the address is decremented before it is used in the Autodecrement mode
and incremented after it is used in the Autoincrement mode. The main
reason for this is that these two modes can be used together to implement
a stack.

3.4 Instruction Formats

The previous sections have shown you that the processor can execute
different types of instructions and there are different ways of specifying
the operands. Once all this is decided, this information has to be presented
to the processor in the form of an instruction format. The number of bits
in the instruction is divided into groups called fields. The most common
fields found in instruction formats are

1. An operation code field that specifies the operation to be performed.
The number of bits will indicate the number of operations that can be
performed.

2. An address field that designates a memory address or a processor
register. The number of bits depends on the size of memory or the number
of registers.

3. Amode field that specifies the way the operand or the effective address
is determined. This depends on the number of addressing modes
supported by the processor.

The number of address fields may be three, two or one depending on the
type of ISA used. Also, observe that, based on the number of operands
that are supported and the size of the various fields, the length of the
instructions will vary. Some processors fit all the instructions into a single

89

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

sized format, whereas others make use of formats of varying sizes.
Accordingly, you have a fixed format or a variable format.

Interpreting memory addresses — you basically have two types of
interpretation of the memory addresses — Big endian arrangement and the
little endian arrangement. Memories are normally arranged as bytes and
a unique address of a memory location is capable of storing 8 bits of
information. But when you look at the word length of the processor, the
word length of the processor may be more than one byte. Suppose you
look at a 32-bit processor, it is made up of four bytes. These four bytes
span over four memory locations. When you specify the address of a word
how you would specify the address of the word — are you going to specify
the address of the most significant byte as the address of the word (big
end) or specify the address of the least significant byte (little end) as the
address of the word. That distinguishes between a big endian arrangement
and a little endian arrangement. IBM, Motorola, HP follow the big endian
arrangement and Intel follows the little endian arrangement. Also, when
a data spans over different memory locations, and if you try to access a
word which is aligned with the word boundary, we say there is an
alignment. If you try to access the words not starting at a word boundary,
you can still access, but they are not aligned. Whether there is support to
access data that is misaligned is a design issue. Even if you’re allowed to
access data that is misaligned, it normally takes more number of memory
cycles to access the data.

Finally looking at the role of compilers the compiler has a lot of role to
play when you’re defining the instruction set architecture. Gone are the
days where people thought that compilers and architectures are going to
be independent of each other. Only when the compiler knows the internal
architecture of the processor it’ll be able to produce optimised code. So
the architecture will have to expose itself to the compiler and the compiler
will have to make use of whatever hardware is exposed. The ISA should
be compiler friendly. The basic ways in which the ISA can help the
compiler are regularity, orthogonality and the ability to weigh different
options.

Finally, all the features of an ISA are discussed with respect to the 80x86
and MIPS.

1. Class of ISA: Nearly all ISAs today are classified as general-purpose
register architectures, where the operands are either registers or memory
locations. The 80%86 has 16 general-purpose registers and 16 that can
hold floating point data, while MIPS has 32 general-purpose and 32
floating-point registers. The two popular versions of this class
are register-memory ISAs such as the 80x86, which can access memory
as part of many instructions, and load-store ISAs such as MIPS, which
can access memory only with load or store instructions. All recent ISAs
are load-store.

2. Memory addressing: Virtually all desktop and server computers,
including the 8086 and MIPS, use byte addressing to access memory

90

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

operands. Some architectures, like MIPS, require that objects must
be aligned. An access to an object of size s bytes at byte address A is
aligned if Amods =0. The 80x86 does not require alignment, but
accesses are generally faster if operands are aligned.

3. Addressing modes: In addition to specifying registers and constant
operands, addressing modes specify the address of a memory object.
MIPS addressing modes are Register, Immediate (for constants), and
Displacement, where a constant offset is added to a register to form the
memory address. The 80x86 supports those three plus three variations of
displacement: no register (absolute), two registers (based indexed with
displacement), two registers where one register is multiplied by the size
of the operand in bytes (based with scaled index and displacement). It has
more like the last three, minus the displacement field: register indirect,
indexed, and based with scaled index.

4. Types and sizes of operands: Like most ISAs, MIPS and 80x%86
support operand sizes of 8-bit (ASCII character), 16-bit (Unicode
character or half word), 32-bit (integer or word), 64-bit (double word or
long integer), and IEEE 754 floating point in 32-bit (single precision) and
64-bit (double precision). The 80x86 also supports 80-bit floating point
(extended double precision).

5. Operations: The general categories of operations are data transfer,
arithmetic logical, control, and floating point. MIPS is a simple and easy-
to-pipeline instruction set architecture, and it is representative of the RISC
architectures being used in 2006. The 80x86 has a much richer and larger
set of operations.

6. Control flow instructions: Virtually all 1SAs, including 80%86 and
MIPS, support conditional branches, unconditional jumps, procedure
calls, and returns. Both use PC-relative addressing, where the branch
address is specified by an address field that is added to the PC. There are
some small differences. MIPS conditional branches (BE, BNE, etc.) test
the contents of registers, while the 80x86 branches (JE, JNE, etc.) test
condition code bits set as side effects of arithmetic/logic operations. MIPS
procedure call (JAL) places the return address in a register, while the
80x86 call (CALLF) places the return address on a stack in memory.

7. Encoding an ISA : There are two basic choices for encoding: fixed
length and variable length. All MIPS instructions are 32 bits long, which
simplifies instruction decoding (shown below). The 80x86 encoding is
variable length, ranging from 1 to 18 bytes. Variable-length instructions
can take less space than fixed-length instructions, so a program compiled
for the 80%86 is usually smaller than the same program compiled for
MIPS. Note that the choices mentioned above will affect how the
instructions are encoded into a binary representation. For example, the
number of registers and the number of addressing modes both have a
significant impact on the size of instructions, as the register field and
addressing mode field can appear many times in a single instruction.
some types of instruction sets?

91

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

The various types of instruction sets include the following:

Complex instruction set computer. CISC processors have an additional
microcode or microprogramming layer where instructions act as small
programs. Programmable instructions are stored in fast memory and can
be updated. More instructions are included in CISC instruction sets than
in other types of instruction sets. A single instruction can initiate multiple
actions by the computer, such as a single add command launching
multiple memory access load and store instructions.

Reduced instruction set computer. RISC architecture has hard-wired
control. It does not require a microcode but has a greater base instruction
set. RISC also uses a smaller and more compact instruction set with a
fixed instruction format. RISC processors are designed to process faster
and more efficiently.

Enhancement instruction sets. These instruction types are more familiar
because they are often used in marketing CPUs. Examples of this go back
to the 166-megahertz Intel Pentium with Multimedia Extensions (MMX)
technologies. It was introduced in 1996 and marketed with enhanced Intel
CPU multimedia performance. MMX refers to the extended instruction
set.

Self-Assessment Exercises 2

Fill in the gaps in the sentences below with the most suitable words:

1. The mode specifies that the operand is given explicitly in the
instruction.
2. 1In mode, the effective address is the contents of a register

specified in the instruction.

3. The addressing mode uses the program counter to address
memory locations relative to the current instruction.

4.0 CONCLUSION

Basically means that an ISA describes the design of a Computer in
terms of the basic operations it must support. The ISA is not concerned
with the implementation-specific details of a computer. It is only
concerned with the set or collection of basic operations the computer must
support. For example, the AMD Athlon and the Core 2 Duo processors
have entirely different implementations but they support more or less the
same set of basic operations as defined in the x86 Instruction Set.

50 SUMMARY

An instruction set is a group of commands for a CPU in machine
language. The term can refer to all possible instructions for a CPU or a
subset of instructions to enhance its performance in certain situations. To

92

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

summarize, we have looked at the taxonomy of ISAs and the various
features that need to be decided while designing the ISA. We also looked
at example ISAs, the MIPS ISA and the 80x86 ISA.

6.0 Tutor marked assignment
1. What is a instruction set?

6.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1
1.B
2.C
3. A

Self-Assessment Exercise 2
1. Immediate

2. Register

3. Relative

7.0 REFERENCES/ FURTHER READING

Computer Architecture — A Quantitative Approach , John L. Hennessy
and David A. Patterson, 5th.Edition, Morgan Kaufmann, Elsevier, 2011,
Computer Organization and Design — The Hardware / Software Interface,
David A. Patterson and John L. Hennessy, 4th.Edition, Morgan
Kaufmann, Elsevier, 2009.

Computer Organization, Carl Hamacher, Zvonko Vranesic and Safwat
Zaky, 5th.Edition, McGraw-Hill Higher Education, 2011.

93

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

UNIT 2 INSTRUCTION CYCLE

CONTENT

1.0 INTRODUCTION

2.0 OBJECTIVES

3.0 MAIN CONTENT

3.1 Instruction Cycle

3.2 Different Instruction Cycles
3.3 Uses of various Instruction Cycles
4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

The instruction cycle is a basic computer system that deals with the central
processor unit's core operations. It is also known as the fetch-decode-
execute cycle, and is a fundamental concept in computer architecture and
microprocessor operation. It represents the series of steps that a
computer's central processing unit (CPU) goes through to execute a
single-machine instruction.

20 OBJECTIVES
At the end of this unit, you should be able to
understand the instruction cycle.

3.1 Instruction Cycle

A program residing in the memory unit of a computer consists of a
sequence of instructions. These instructions are executed by the processor
by going through a cycle for each instruction. An instruction cycle, also
known as the fetch-decode-execute cycle is the basic operational process
of a computer. This process is repeated continuously by the CPU from
boot up to shut down of the computer.

In a basic computer, each instruction cycle consists of the following
phases:

Fetch instruction from memory.

Decode the instructions.

Read the effective address from memory.

Execute the instruction.

94

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Excute the Instruction Decode
Instruction CyCle Instruction

jy Read address
from memory

During this phase, the computer system boots up and the Operating
System loads into the central processing unit's main memory. It begins
when the computer system starts.

Following are the steps that occur during an instruction cycle:

1. Fetch the Instruction

The first phase is instruction retrieval. Each instruction executed in a
central processing unit uses the fetch instruction. During this phase, the
central processing unit sends the PC to MAR and then the READ
instruction to a control bus. After sending a read instruction on the data
bus, the memory returns the instruction that was stored at that exact
address in the memory. The CPU then copies data from the data bus into
MBR, which it then copies to registers. The pointer is incremented to the
next memory location, allowing the next instruction to be fetched from
memory. The instruction is fetched from memory address that is stored in
PC (Program Counter) and stored in the instruction register IR. At the end
of the fetch operation, PC is incremented by 1 and it then points to the
next instruction to be executed.

2. Decode the Instruction

The second phase is instruction decoding. During this step, the CPU
determines which instruction should be fetched from the instruction and
what action should be taken on the instruction. The instruction's opcode
is also retrieved from memory, and it decodes the related operation that
must be performed for the instruction. The instruction in the IR is
executed by the decoder.

3. Read the Effective Address

The third phase is the reading of an effective address. The operation's
decision is made during this phase. Any memory-type operation or non-
memory-type operation can be used. Direct memory instruction and

95

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

indirect memory instruction are the two types of memory instruction
available. If the instruction has an indirect address, the effective address
is read from the memory. Otherwise, operands are directly read in case of
immediate operand instruction.

4. Execute the Instruction

The last step is to carry out the instructions. The instruction is finally
carried out at this stage. The instruction is carried out, and the result is
saved in the register. The CPU gets prepared for the execution of the next
instruction after the completion of each instruction. The execution time of
each instruction is calculated, and this information is used to determine
the processor's processing speed. The Control Unit passes the information
in the form of control signals to the functional unit of the CPU. The result
generated is stored in the main memory or sent to an output device.

The cycle is then repeated by fetching the next instruction. Thus in this
way, the instruction cycle is repeated continuously.

Load address to PC

!

Load contents of PC to IR

|

Update PC to next address

|

Execute instruction

No Yes

service interrupts

The sequence of operations performed by the CPU during its execution
of instructions is presented in the figure. As long as there are instructions
to execute, the next instruction is fetched from the main memory. The
instruction is executed based on the operation specified in the opcode field
of the instruction. After the instruction execution, a test is made to
determine whether an interrupt has occurred. An interrupt handling
routine needs to be invoked in case of an interrupt.

96

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

3.2 Different Instruction Cycles

The concept of instruction cycles is integral to understanding how a
computer's central processing unit (CPU) executes instructions. Here's an
explanation of each of these cycles:

Fetch Cycle

Description: The fetch cycle is the initial stage of the instruction cycle.
It involves retrieving the next instruction from memory.

Operation: The CPU uses the program counter (PC) to access the
memory location where the next instruction is stored. The instruction is
fetched and placed in the instruction register (IR).

Purpose: This cycle ensures that the CPU has the next instruction ready
for decoding and execution.

Indirect Cycle

Description: The indirect cycle is sometimes required when instructions
involve accessing memory locations that contain addresses or pointers to
the actual data.

Operation: During this cycle, the CPU may use an address obtained from
the previous instruction to access another memory location, which holds
the data or another address to be used in the next cycle.

Purpose: The indirect cycle enables the CPU to follow memory
references and retrieve the actual data required for execution.

Execute Cycle

Description: The execute cycle is where the central processing unit
performs the operation specified by the decoded instruction.

Operation: The CPU carries out arithmetic computations, logical
operations, data transfers, or any other actions as dictated by the
instruction. This may involve accessing data from registers or memory,
performing calculations, and updating registers or memory locations.
Purpose: The execution stage accomplishes the intended operation and is
where the actual work of the instruction takes place.

Interrupt Cycle

Description: The interrupt cycle comes into play when an external event
or condition triggers an interrupt, causing the CPU to temporarily suspend
its current execution to handle the interrupt request.

Operation: The CPU saves its current state (program counter and other
relevant information) before jJumping to an interrupt service routine (ISR).
After servicing the interrupt, the CPU may restore its state and continue
execution.

Purpose: Interrupt cycles enable a CPU to respond to external events or
asynchronous inputs promptly without losing important data or program
context.

Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. How many basic phases does an instruction cycle consist of?

97

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

A. Two (fetch and execute)

B. Three (fetch, decode, execute)

C. Four (fetch, decode, execute, store)

D. Five (fetch, decode, read, execute, store)

2. What happens during the decode phase?
A. The instruction is retrieved from memory
B. The CPU determines what operation to perform
C. The instruction is executed
D. The result is stored in memory

3. Which cycle handles external events that interrupt normal processing?
A. Fetch Cycle
B. Execute Cycle
C. Indirect Cycle
D. Interrupt Cycle

3.3 Uses of Different Instruction Cycles

The different instruction cycles (fetch, indirect, execute, and interrupt) in
a computer's operation have different purposes and applications, ensuring
efficient and responsive processing. Here are the uses of each instruction
cycle:

Fetch Cycle

Use: Retrieving the next instruction from memory.

Application: Essential for the sequential execution of program
instructions, ensuring the CPU has the next instruction ready for decoding
and execution.

Example: Fetching the opcode of the next instruction from memory to be
decoded and executed.

Indirect Cycle

Use: Handling instructions that involve accessing memory locations
containing addresses or pointers.

Application: Facilitates memory referencing, allowing the CPU to
navigate through multiple levels of indirection to access the actual data or
instructions.

Example: Accessing data through a memory location that contains a
pointer to the actual data's location.

Execute Cycle

Use: Performing the operation specified by the decoded instruction.
Application: Where the actual computation or data manipulation occurs,
making it the heart of instruction execution.

Example: Carrying out arithmetic calculations, logical operations, data
transfers, or any actions dictated by the instruction.

Interrupt Cycle

Use: Handling external events or requests for interrupting the CPU's
current execution.

98

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Application: Ensures prompt response to hardware or software events
such as hardware interrupts, system calls, or exceptions, allowing the
CPU to temporarily switch tasks.

Example: Responding to a keyboard input interrupt, saving the CPU's
current state, and invoking an interrupt service routine (ISR).

Why do we Need an Instruction Cycle?

The instruction cycle of a computer system is necessary for understanding
the flow of instructions and the execution of an instruction in a computer
processor.

It is responsible for the complete flow of instructions from the start of the
computer system through its shutdown. The instruction cycle helps to
understand the internal flow of the central processing unit, allowing any
faults to be immediately resolved.

It deals with a computer processor's basic operations and demands a
detailed understanding of the many steps involved.

All instructions for the computer processor system follow the fetch-
decode-execute cycle.
Importance of Instruction Cycle

The instructions are the basic activities conducted in the main memory of
the central processing unit. That is why they are so crucial to the processor
system.

It's a set of stages that helps us to understand how instruction flows. The
instruction cycle allows the computer processor to see the sequence of
instructions from start to finish.

It is common for all instruction sets to require a thorough understanding
to perform all operations efficiently.

The processing time of a programme can be easily calculated using the
instruction cycle, which aids in determining the processor's speed.

The processor's speed determines how many instructions can be executed
simultaneously in the central processing unit.

Advantages of Instruction Cycle

Efficiency: The fetch-decode-execute cycle, consisting of instruction
cycles, allows CPUs to execute instructions sequentially and efficiently,
ensuring that each instruction is processed in a well-defined manner.
Flexibility: CPUs can handle a wide range of instructions, from
arithmetic operations to data transfers, by following the execution cycle
for each instruction type.

Control Flow: The instruction cycle controls the flow of program
execution, advancing to the next instruction after each cycle, allowing for
precise execution and program control.

Responsiveness: CPUs can quickly respond to external events and
handle interrupts or exceptions using the interrupt cycle, making them
versatile and suitable for various tasks.

Disadvantages of Instruction Cycle

Clock Speed: The speed of instruction execution is often constrained by
the system's clock speed, limiting the number of instructions that can be

99

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

executed in a given period.

Pipeline Stalls: In pipelined architectures, where multiple instructions
are processed simultaneously, issues like pipeline stalls can lead to
inefficiencies if instructions depend on one another.

Resource Limitations: CPU execution is subject to resource limitations,
such as the availability of registers, memory access times, and cache sizes,
which can affect performance.

Instruction Set Limitations: CPUs are limited by their instruction set
architectures (ISAs), which may not include certain specialized
instructions or features required for specific applications.

Complexity: The fetch-decode-execute cycle is an intricate process, and
the complexity of instruction execution can lead to design challenges and
potential errors in the processor's microarchitecture.

Input-Output Configuration

In computer architecture, input-output devices act as an interface between
the machine and the user.

Instructions and data stored in the memory must come from some input
device. The results are displayed to the user through some output device.
The following block diagram shows the input-output configuration for a
basic computer.

Input - Output Configuration:

Input - Output Terminal Serial Communication Computer registers
Interface &
Flip Flops

Printer }(—{ B }4—{ OUTR <
Interface

AC |

Transmitter
‘ Keyboard }—)‘ Interface ’ INPR |

o The input-output terminals send and receive information.

o The amount of information transferred will always have eight bits
of an alphanumeric code.

o The information generated through the keyboard is shifted into an
input register 'INPR".

o The information for the printer is stored in the output register
'OUTR".

o Registers INPR and OUTR communicate with a communication

100

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

interface serially and with the AC in parallel.

o The transmitter interface receives information from the keyboard
and transmits it to INPR.

o The receiver interface receives information from OUTR and sends
it to the printer serially.

4.0 CONCLUSION

we have thoroughly discussed on Instruction Cycle in Computer
Architecture. We also learned about different instruction cycles, the uses
of different instruction cycles, their needs, and their importance. Later in
the end we discussed the advantages and disadvantages of the instruction
Cycle in Computer Architecture.

50 SUMMARY

In computer organization, an instruction cycle, also known as a fetch-
decode-execute cycle, is the basic operation performed by a CPU to
execute an instruction. The instruction cycle consists of several steps,
each of which performs a specific function in the execution of the
instruction. The major steps in the instruction cycle are:

Fetch: In the fetch cycle, the CPU retrieves the instruction from memory.
The instruction is typically stored at the address specified by the program
counter (PC). The PC is then incremented to point to the next instruction
in memory.

Decode: In the decode cycle, the CPU interprets the instruction and
determines what operation needs to be performed. This involves
identifying the opcode and any operands that are needed to execute the
instruction.

Execute: In the execute cycle, the CPU performs the operation specified
by the instruction. This may involve reading or writing data from or to
memory, performing arithmetic or logic operations on data, or
manipulating the control flow of the program.

Some additional steps may be performed during the instruction cycle,
depending on the CPU architecture and instruction set:

Fetch operands: In some CPUs, the operands needed for an instruction
are fetched during a separate cycle before the execute cycle. This is called
the fetch operands cycle.

Store results: In some CPUs, the results of an instruction are stored
during a separate cycle after the execute cycle. This is called the store
results cycle.

Interrupt handling: In some CPUs, interrupt handling may occur during
any cycle of the instruction cycle. An interrupt is a signal that the CPU
receives from an external device or software that requires immediate
attention. When an interrupt occurs, the CPU suspends the current
instruction and executes an interrupt handler to service the interrupt.

101

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

0 Tutor marked assignment
What is the Instruction cycle?
What is five stage instruction cycle?
Why is instruction cycle important?
What are the steps of the instructional cycle?

PO PO

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1
1.C

2.B
3.D

7.0 REFERENCES/ FURTHER READING

Computer Architecture — A Quantitative Approach , John L. Hennessy
and David A. Patterson, 5th.Edition, Morgan Kaufmann, Elsevier, 2011.
Computer Organization and Design — The Hardware / Software Interface,
David A. Patterson and John L. Hennessy, 4th.Edition, Morgan
Kaufmann, Elsevier, 2009.

Computer Organization, Carl Hamacher, Zvonko Vranesic and Safwat
Zaky, 5th.Edition, McGraw-Hill Higher Education, 2011.

102

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

MODULE 5 THE MEMORY SYSTEMS

Unit 1 Computer Memory
Unit 2 Memory Hierarchy
Unit 3 Virtual Memory
Unit 4 Cache Memory

UNIT 1 COMPUTER MEMORY

1.0Introduction

2.00bjectives

3.0 Main content

3.1 Memory Characteristics and Organization

3.2 Types of Memory

4.0Conclusion

50 Summary

6.0 Tutor marked assignment 7.0References and further reading

1.0 INTRODUCTION

A computer is an electronic device and that accepts data, processes that
data, and gives the desired output. It performs programmed computation
with accuracy and speed. In other words, the computer takes data as input
and stores the data/instructions in the memory (use them when required).
After processing the data, it converts into information. Finally, gives the
output. Here, input refers to the raw data that we want the machine to
process and return to us as a result, output refers to the response that the
machine provides in response to the raw data entered and the processing
of data may involve analyzing, searching, distributing, storing data, etc.
Thus, we can also call a computer data processing system.

20 OBJECTIVES

At the end of this unit, you should be able to

- Understand the memory characteristics and organization
- Explain the types of memory

3.1 Memory Characteristics and Organization

Memory is one of the important subsystems in a Computer. It is a volatile
storage system that stores Instructions and Data. Unless the program gets
loaded in memory in executable form, the CPU cannot execute it. CPU
Interacts closely with memory for execution.

There are many other storage systems in a computer that share the
characteristics of memory. So why have so many storage systems?
Everyone desires to have very large, super fast, and cheap storage.
Storage cost varies depending on the type of storage. Memory devices are
hierarchically connected to design a cost-effective memory. When we say
memory, we refer to the main memory, commonly referred to as RAM.

103

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Memory (Storage Device) Characteristics

Although Memory and Storage devices share many characteristics, there
is uniqueness in each one of them. Some of the most important
characteristics are as below:

Access Time - The access time depends on the physical nature of the
storage medium and the access mechanisms used. Refer to Figure 1. At
the bottom is access time in Milliseconds, while at the top of the triangle,
itis less than 10 ns.

For memory, the access time can be calculated as the time difference
between the request to the memory and the service by memory.

Access Mode - Access mode is a function of both memory organization
and the inherent characteristics of the storage technology of the device.
Access mode has relevance to the access time. There are three types of
access methods.

Random Access: If storage locations can be accessed in any order then
access time is independent of the storage location being accessed. Ex:
Semiconductor memory.

Serial Access: Memory whose storage locations can be accessed only in
a certain predetermined sequence. Ex: Magnetic tape

Semi Random: The access is partly random and there apart serial. Ex:
Hard disk, CD drives. It is random to locate the tracks and access within
the track is serial.

Retention - This is the characteristic of memory relating to the
availability of written data for reading at a later time. Retention is a very
important characteristic in the design of a system.

Volatile

- the contents are retained - the written contentsare

as long as power supply is available for ever unless erased
there; once switched off or rewritten .

written contents are lost. Ex: Hard Disk, Back up devices,

EX: RAM (Main memory) PROM

Cycle Time - Is defined as the minimum time between two consecutive
access operations. This is greater than the access time. Generally, when
once access is over, there is a time gap required to start the next access,
although minimal. Cycle time = Access time + defined time delay. Ex:
You ask the shop keeper of what is the speed of the memory strip.

Capacity - Measured in Units of Bytes, Kilobytes, Megabytes,
Gigabytes, Terabytes, Petabytes. In figure 1, the bottom of the triangle

104

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

has a larger capacity and the ones at the top have the far lesser capacity.
Ex: the Memory strip as 2GB, 4GB, Hard disk as 1TB, GPRs are 128
words.

Cost Per bit — Factors of cost per bit are Access time, Cycle time, Storage
capacity, the purchase cost of the device and the hardware to use the
device (controller). We don’t have much choice on this; designers care
for this.

Reliability — It is related to the lifetime of the device. Measured as Mean
Time Between Failure (MTBF), in the units of days/years. Ex: Think of
how frequently you replace your Hard disk while the CPU is still usable.
There is a capacity/performance/price gap between each pair of adjacent
levels of storage types (Refer figure 1). The objective of multilevel
memory organisation is to achieve a good trade-off between cost, storage
capacity and performance for the memory system as a whole.

Multilevel hierarchical memory is based on the principle of Locality of
Reference i.e. the address generated by a program tend to be localised to
successive address locations and therefore predictable. In figure 1, the
unit of data movement between successive levels is also inscribed.

CPU Memory Interface

Level 0 to Level 3 of the storage devices are volatile memory subsystems
which are accessed by CPU directly. The Level 4 and level 5 are storage
devices which are classified as 1/O devices and will be dealt with later as
a separate category. So let us see about the CPU Memory Interface basics.
The CPU interacts with memory for two operations i.e READ or WRITE.
READ is for getting either instructions or Data (Operands). Write is
generally for writing results upon instruction execution. To access
memory, the address of the memory location is required. This address is
always loaded in the Memory Address Register (MAR) by the CPU.
READ or WRITE operation is always carried out on the location specified
by MAR. In the case of READ, the memory returns the data to the CPU
while in the case of WRITE the data to be written onto the memory
location is given by CPU. The data exchange happens via the Memory
Data Register (MDR). The CPU communicates to the memory about the
READ or WRITE activity as control signals. Also, some more signals to
time the validity of information on the Address bus and Data bus are part
of Control Signals.

The communication about the address and data and the associated Control
signals happen in the bus. A bus is a set of physical connections between
two entities used for communication using electrical signals. This external
bus has three components namely, (i) Address bus, (ii) Data bus, and (iii)
Control Signals. Memory Address Register (MAR) and the Memory Data
Register (MDR) play an important role in communication. The control
signals are generated by the Control Unit. For more clarity refer to figure
16.

105

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Main Memory

M bit Address bus

"f@é‘) N bit Data bus

Control signals (RD,WR etc

Figure 16: CPU Memory Communication Interface

Please note that the address bus is unidirectional and the data bus is
bidirectional for obvious reasons discussed above. The control bus is also
bidirectional. Further, the width of the address bus and data bus have
critical meaning. The CPU can READ or WRITE data equal to the width
of the data bus in one access. Generally, the width of the data bus equals
the CPU word width. The width or the number of bits in the address bus
has a bearing on the maximum number of locations that can be addressed
or accessed by CPU. The signals on the bus are synchronised with the
CPU clock.

Data transfer rate or bandwidthis one of the measures of the
performance of the external bus between CPU and Memory. The
maximum amount of information that can be transferred to or from the
memory per unit time is the data transfer rate or bandwidth and is
measured in bits or words per second.

Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. Which type of memory is volatile?
A.ROM
B. RAM
C. Flash memory
D. Hard disk

2. What does DRAM stand for?
A. Direct Random Access Memory
B. Dynamic Random Access Memory
C. Dual Random Access Memory
D. Digital Random Access Memory

106

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

3. Which characteristic describes how long it takes to access data in
memory?

A. Capacity

B. Access Time

C. Cycle Time

D. Retention
Memory Capacity Integration
Memory is often available in standard capacity strips or modules. More
often we need to integrate these modules to meet our requirement. When
more than a strip is assembled, how do the expansion and chaos-free
access happen is a curiosity. We will see now.
A typical memory module has the interface as shown in figure 17. This is
in line with the signals on the external bus. A mention is required on
RD/WR'and CS'. RD/WR' is a signal for READ or WRITE operation in
mutual exclusion. When the signal is logical HIGH it is READ operation
and when Logical LOW, WRITE is enabled on the Memory Module. CS'
is Chip Select and active LOW i.e when this signal is logical LOW, only
then the module is enabled and any operation can be done on this module.
This Chip Select signal is useful in memory expansion. When RD is
active, DataOUT comes from the module, while WR’ i1s active the
direction of data is DATA-IN.

M bit address lines

N bit data |ines

RD/WR’

Figure 17: Typical Memory Module Interface

Memory expansion to the desired capacity is achieved by two means:
Increasing the word width by a factor (Refer figure 18)

107

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Data 1-n Datan+l1 to 2n

M bit address lines m bit ad@ress lines

N L datalines

RD/WR’ €mo RD/WR’ €mo
cs’ CS

Memory Expansion by word width

Figure 18: Memory expansion by word width

Increasing the Number of Words (address) by a Factor (Refer figure 19)

N bit data Jines
RD/WR’

(m+1) b

N bitfata lines

Total Capacity
2 X2

Figure 19: Memory expansion by address range

When the capacity is expanded to increase the addressable range, the CS
signal plays a role in selecting the correct block. The MSB bit(s) of the
address is(are) decoded and connected to each module as CS' enable. In
figure 19, a simple inverter (NOT logic) is used on the MSB line as there
are only 2 modules. If there are more modules then a decoder is required.
This kind of extrapolation is feasible to any capacity in multiples of the
basic module.

108

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

3.2 Types of Computer Memory

In general, computer memory is of three types:

Primary memory

Secondary memory

Cache memory

Now we discuss each type of memory one by one in detail:

1. Primary Memory

It is also known as the main memory of the computer system. It is used to
store data and programs or instructions during computer operations. It
uses semiconductor technology and hence is commonly called
semiconductor memory. Primary memory is of two types:

RAM (Random Access Memory): It is a volatile memory. Volatile
memory stores information based on the power supply. If the power
supply fails/is interrupted/stopped, all the data and information on this
memory will be lost. RAM is used for booting up or starting the computer.
It temporarily stores programs/data which has to be executed by
the processor. RAM is of two types:

S RAM (Static RAM): S RAM uses transistors and the circuits of this
memory are capable of retaining their state as long as the power is applied.
This memory consists of the number of flip flops with each flip flop
storing 1 bit. It has less access time and hence, it is faster.

DRAM (Dynamic RAM): D RAM uses capacitors and transistors and
stores the data as a charge on the capacitors. They contain thousands of
memory cells. It needs refreshing of charge on the capacitor after a few
milliseconds. This memory is slower than S RAM.

ROM (Read Only Memory): It is a non-volatile memory. Non-volatile
memory stores information even when there is a power supply failed/
interrupted/stopped. ROM is used to store information that is used to
operate the system. As its name refers to read-only memory, we can only
read the programs and data that is stored on it. It contains some electronic
fuses that can be programmed for a piece of specific information. The
information stored in the ROM in binary format. It is also known as
permanent memory. ROM is of four types:

MROM(Masked ROM): Hard-wired devices with a pre-programmed
collection of data or instructions were the first ROMs. Masked ROMs are
a type of low-cost ROM that works in this way.

PROM (Programmable Read Only Memory): This read-only memory
iIs modifiable once by the user. The user purchases a blank PROM and
uses a PROM program to put the required contents into the PROM. Its
content can’t be erased once written.

EPROM (Erasable Programmable Read Only Memory): EPROM is
an extension to PROM where you can erase the content of ROM by
exposing it to Ultraviolet rays for nearly 40 minutes.

EEPROM (Electrically Erasable Programmable Read Only
Memory): Here the written contents can be erased electrically. You can
delete and reprogramme EEPROM up to 10,000 times. Erasing and

109

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

programming take very little time, i.e., nearly 4 -10 ms(milliseconds).
Any area in an EEPROM can be wiped and programmed selectively.

2. Secondary Memory

It is also known as auxiliary memory and backup memory. It is a non-
volatile memory and used to store a large amount of data or information.
The data or information stored in secondary memory is permanent, and it
is slower than primary memory. A CPU cannot access secondary memory
directly. The data/information from the auxiliary memory is first
transferred to the main memory, and then the CPU can access it.
Characteristics of Secondary Memory

It is a slow memory but reusable.

It is a reliable and non-volatile memory.

It is cheaper than primary memory.

The storage capacity of secondary memory is large.

A computer system can run without secondary memory.

In secondary memory, data is stored permanently even when the power is
off.

Types of Secondary Memory

1. Magnetic Tapes: Magnetic tape is a long, narrow strip of plastic film
with a thin, magnetic coating on it that is used for magnetic recording.
Bits are recorded on tape as magnetic patches called RECORDS that run
along many tracks. Typically, 7 or 9 bits are recorded concurrently. Each
track has one read/write head, which allows data to be recorded and read
as a sequence of characters. It can be stopped, started moving forward or
backward or rewound.

2. Magnetic Disks: A magnetic disk is a circular metal or a plastic plate
and these plates are coated with magnetic material. The disc is used on
both sides. Bits are stored in magnetized surfaces in locations called
tracks that run in concentric rings. Sectors are typically used to break
tracks into pieces.

_—>A Sector

A Track

5

110

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Hard discs are discs that are permanently attached and cannot be removed
by a single user.

3. Optical Disks: It’s a laser-based storage medium that can be written to
and read. It is reasonably priced and has a long lifespan. The optical
disc can be taken out of the computer by occasional users.

Types of Optical Disks

CD -ROM

It’s called a compact disk. Only read from memory.

Information is written to the disc by using a controlled laser beam to burn
pits on the disc surface.

It has a highly reflecting surface, which is usually aluminium.

The diameter of the disc is 5.25 inches.

16000 tracks per inch is the track density.

The capacity of a CD-ROM is 600 MB, with each sector storing 2048
bytes of data.

The data transfer rate is about 4800KB/sec. & the new access time is
around 80 milliseconds.

WORM-(WRITE ONCE READ MANY)

A user can only write data once.

The information is written on the disc using a laser beam.

It is possible to read the written data as many times as desired.

They keep lasting records of information but access time is high.

It is possible to rewrite updated or new data to another part of the disc.
Data that has already been written cannot be changed.

Usual size — 5.25 inch or 3.5 inch diameter.

The usual capacity of 5.25 inch disk is 650 MB,5.2GB etc.

DVDs

The term “DVD” stands for “Digital Versatile/Video Disc,” and there are
two sorts of DVDs:

DVDR (writable)

DVDRW (Re-Writable)

DVD-ROMS (Digital Versatile Discs): These are read-only memory
(ROM) discs that can be used in a variety of ways. When compared to
CD-ROMs, they can store a lot more data. It has a thick polycarbonate
plastic layer that serves as a foundation for the other layers. It’s an optical
memory that can read and write data.

DVD-R: DVD-R is a writable optical disc that can be used just once. It’s
a DVD that can be recorded. It’s a lot like WORM. DVD-ROMs have
capacities ranging from 4.7 to 17 GB. The capacity of 3.5 inch disk is 1.3
GB.

3. Cache Memory

It is a type of high-speed semiconductor memory that can help the CPU
run faster. Between the CPU and the main memory, it serves as a buffer.
It is used to store the data and programs that the CPU uses the most
frequently.

111

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Advantages of Cache Memory

It is faster than the main memory.

When compared to the main memory, it takes less time to access it.
It keeps the programs that can be run in a short amount of time.

It stores data in temporary use.

Disadvantages of Cache Memory

Because of the semiconductors used, it is very expensive.

The size of the cache (amount of data it can store) is usually small.

Self-Assessment Exercises 2
Fill in the gaps in the sentences below with the most suitable words:

1. memory is non-volatile and stores information even when
power is off.

2. The three main types of computer memory are primary memory,
secondary memory, and memory.

2. Memory expansion can be achieved by increasing the
width or increasing the number of

40 CONCLUSION

A physical device that stores data or information temporarily or
permanently in it is called memory. It’s a device where data is stored and
processed. In common, a computer has primary and secondary memories.
Auxiliary (secondary) memory stores data and programs for long-term
storage or until the time a user wants to keep them in memory, while main
memory stores instructions and data during programme execution; hence,
any programme or file that is currently running or executing on a
computer is stored in primary memory.

50 SUMMARY

Computer memory is a crucial component of a computer system
responsible for storing and accessing data and instructions necessary for
processing tasks. It is broadly categorized into two types: volatile memory
(such as RAM) and non-volatile memory (such as ROM and storage
devices like SSDs and HDDs). Volatile memory, like RAM, temporarily
holds data and instructions that the CPU needs while performing tasks,
ensuring quick access and efficient processing. Non-volatile memory, on
the other hand, retains data even when the computer is powered off,
storing essential firmware, system software, and user data. The interplay
between these types of memory enables a computer to function
efficiently, balancing speed and storage capacity to handle various
computing tasks.

112

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

6.0 Tutor marked assignment
1. What is memory?
2. List and briefly define the types of memory

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1
1.B

2.B
3.B
Self-Assessment Exercise 2
1. ROM

2. Cache
3. Word, addresses

7.0 References/ Further reading

Read, Jennifer (5 November 2020). "DDR5 Era To Officially Begin In
2021, With DRAM Market Currently Transitioning Between
Generations, Says TrendForce". EMSNow. Retrieved 2 November 2022.
Jump up to:a b Hemmendinger, David (February 15, 2016). "Computer
memory". Encyclopedia Britannica. Retrieved 16 October 20109.

A.M. Turingand R.A. Brooker (1952). Programmer's Handbook for
Manchester Electronic Computer Mark Il Archived 2014-01-02 at
the Wayback Machine. University of Manchester.

"The MOS Memory Market" (PDF). Integrated Circuit Engineering
Corporation. Smithsonian Institution. 1997. Archived (PDF) from the
original on 2003-07-25. Retrieved 16 October 2019.

"MOS Memory Market Trends" (PDF). Integrated Circuit Engineering
Corporation. Smithsonian Institution. 1998. Archived (PDF) from the
original on 2019-10-16. Retrieved 16 October 2019.

113

https://en.wikipedia.org/wiki/Computer_memory#cite_ref-:1_2-1
https://web.archive.org/web/20140102231704/http:/www.alanturing.net/turing_archive/archive/m/m01/M01-005.html

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

UNIT 2 MEMORY HIERARCHY

1.0 INTRODUCTION

2.0 OBJECTIVES

3.0 MAIN CONTENT

3.1 Memory Hierarchy Design

3.2 Internal Processor Memories

3.3 Characteristics Terms for Various Memory Devices
40 CONCLUSION

50 SUMMARY

6.0 TUTOR MARKED ASSIGNMENT

7.0 REFERENCES/ FURTHER READING

1.0 INTRODUCTION

In the Computer System Design, memory hierarchy is an enhancement to
organize the memory such that it can minimize the access time. The
Memory Hierarchy was developed based on a program behavior known
as locality of references.

1.0 OBJECTIVES

At the end of this unit, you should be able to

- Memory hierarchy

- List and discuss levels of memory hierarchy

3.1 Memory Hierarchy Design

In computer architecture, the memory hierarchy separates computer
storage into a hierarchy based on response time. Since response time,
complexity, and capacity are related, the levels may also be distinguished
by their performance and control technologies. RAM (Random
Access Memory) is an internal memory device which temporarily holds
data and instructions while processing is happening. If the CPU is the
“brain” of the computer, then RAM is the “working memory” or
"thinking memory" used to store data just for the programs and
applications being used at that time.

A typical memory hierarchy starts with a small, expensive, and relatively
fast unit, called the cache, followed by a larger, less expensive, and
relatively slow main memory unit. Cache and main memory are built
using solid-state semiconductor material (typically CMOS transistors). It
Is customary to call the fast memory level the primary memory. The solid-
state memory is followed by larger, less expensive, and far slower
magnetic memories that consist typically of the (hard) disk and the tape.
It is customary to call the disk the secondary memory, while the tape is
conventionally called the tertiary memory. The objective behind
designing a memory hierarchy is to have a memory system that performs
as if it consists entirely of the fastest unit and whose cost is dominated by
the cost of the slowest unit.

114

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

LEVEL 0

LEVEL 1

LEVEL 2

Increase in cost per bit

LEVEL 3

Increase in Capacity & Access Time

LEVEL 4

MEMORY HIERARCHY DESIGN

In the Computer System Design, Memory Hierarchy is an enhancement
to organize the memory such that it can minimize the access time. The
Memory Hierarchy was developed based on a program behavior known
as locality of references. The figure below clearly demonstrates the
different levels of memory hierarchy :

This Memory Hierarchy Design is divided into 2 main types:

External Memory or Secondary Memory: Comprising Magnetic Disk,
Optical Disk, and Magnetic Tape i.e. peripheral storage devices which are
accessible by the processor via I/0 Module.

Internal Memory or Primary Memory —Comprising of Main Memory,
Cache Memory & CPU registers. This is directly accessible by the
processor.

Thus, a memory system can be considered to consist of three groups of
memories. These are:

3.2 Internal Processor Memories

These consist of a small set of high-speed registers that are internal to a
processor and are used as temporary locations where actual processing is
done.

Primary Memory or Main Memory

It is a large memory which is fast but not as fast as internal processor
memory. This memory is accessed directly by the processor. It is mainly
based on integrated circuits (I1C).

Secondary Memory/Auxiliary Memory/Backing Store:

Auxiliary memory is much larger than main memory but is slower than
main memory. It normally stores system programs (programs which are
used by system to perform various operational functions), other
instructions, programs and data files. Secondary memory can also he used
as an overflow memory in case the main memory capacity has been
exceeded. Secondary memories cannot be accessed directly by a
processor.

First the information of these memories is transferred to the main memory

115

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

and then the information can be accessed as the information of main
memory. There is another kind of memory which is increasingly being
used in modern computers, this is called Cache memory. It is logically
positioned between the internal memory (registers) and main memory. It
stores or catches some of the content of the main memory which is
currently in use of the processor. We will discuss about this memory in
greater details in a subsequent section of this unit.

3.3 Characteristics Terms for Various Memory Devices

The memory hierarchy can be characterized by a number of parameters.
Among these parameters are the access type, capacity, cycle time, latency,
bandwidth, and cost.

The term access: refers to the action that physically takes place during a
read or writes operation.

The capacity: of a memory level is usually measured in bytes.

The cycle time: is defined as the time elapsed from the start of a read
operation to the start of a subsequent read.

The latency: is defined as the time interval between the request for
information and the access to the first bit of that information.

The bandwidth: provides a measure of the number of bits per second that
can be accessed.

The cost: of a memory level is usually specified as dollars per megabytes.
Figure 1 depicts a typical memory hierarchy. Table 1 provides typical
values of the memory hierarchy parameters.

The term random access: refers to the fact that any access to any memory
location takes the same fixed amount of time regardless of the actual
memory location and/or the sequence of accesses that takes place. For
example, if a write operation to memory location 100 takes 15 ns and if
this operation is followed by a read operation to memory location 3000,
then the latter operation will also take 15 ns. This is to be compared to
sequential access in which if access to location 100 takes 500 ns, and if a
consecutive access to location 101 takes 505 ns, then it is expected that
an access to location 300 may take 1500 ns. This is because the memory
has to cycle through locations 100 to 300, with each location requiring 5
ns.

The effectiveness of a memory hierarchy depends on the principle of
moving information into the fast memory infrequently and accessing it
many times before replacing it with new information. This principle is
possible due to a phenomenon called locality of reference; that is, within
a given period of time, programs tend to reference a relatively confined
area of memory repeatedly. There exist two forms of locality: spatial and
temporal locality.

RAM and ROM architecture.

Read-only memory, or ROM, is a form of data storage in computers and
other electronic devices that cannot be easily altered or reprogrammed.
RAM is referred to as volatile memory and is lost when the power is
turned off whereas ROM in non-volatile and the contents are retained

116

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

even after the power is switched off.

Types of ROM: Semiconductor-Based

Classic mask-programmed ROM chips are integrated circuits that
physically encode the data to be stored, and thus it is impossible to change
their contents after fabrication. Other types of non-volatile solid-state
memory permit some degree of modification:

Programmable read-only memory (PROM), or one-time programmable
ROM (OTP), can be written to or programmed via a special device called
a PROM programmer. Typically, this device uses high voltages to
permanently destroy or create internal links (fuses or antifuses) within
the chip. Consequently, a PROM can only be programmed once.
Erasable programmable read-only memory (EPROM) can be erased by
exposure to strong ultraviolet light (typically for 10 minutes or longer),
then rewritten with a process that again needs higher than usual voltage
applied. Repeated exposure to UV light will eventually wear out an
EPROM, but the endurance of most EPROM chips exceeds 1000 cycles
of erasing and reprogramming. EPROM chip packages can often be
identified by the prominent quartz "window" which allows UV light to
enter. After programming, the window is typically covered with a label to
prevent accidental erasure. Some EPROM chips are factory-erased before
they are packaged, and include no window; these are effectively PROM.
Electrically erasable programmable read-only memory (EEPROM) is
based on a similar semiconductor structure to EPROM, but allows its
entire contents (or selected banks) to be electrically erased, then
rewritten electrically, so that they need not be removed from the
computer (whether general-purpose or an embedded computer in a
camera, MP3 player, etc.). Writing or flashing an EEPROM is much
slower (milliseconds per bit) than reading from a ROM or writing to a
RAM (nanoseconds in both cases).

Electrically alterable read-only memory (EAROM) is a type of EEPROM
that can be modified one bit at a time. Writing is a very slow process and
again needs higher voltage (usually around 12 V) than is used for read
access. EAROMs are intended for applications that require infrequent and
only partial rewriting. EAROM may be used as non-volatile storage for
critical system setup information; in many applications, EAROM has
been supplanted by CMOS RAM supplied by mains power and backed-
up with a lithium battery.

Flash memory (or simply flash) is a modern type of EEPROM invented
in 1984. Flash memory can be erased and rewritten faster than ordinary
EEPROM, and newer designs feature very high endurance (exceeding
1,000,000 cycles). Modern NAND flash makes efficient use of silicon
chip area, resulting in individual ICs with a capacity as high as 32 GB as
of 2007; this feature, along with its endurance and physical durability, has
allowed NAND flash to replace magnetic in some applications (such as
USB flash drives). Flash memory is sometimes called flash ROM or flash
EEPROM when used as a replacement for older ROM types, but not in

117

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

applications that take advantage of its ability to be modified quickly and
frequently.

Random-access memory, or RAM, is a form of data storage that can be
accessed randomly at any time, in any order and from any physical
location in contrast to other storage devices, such as hard drives, where
the physical location

of the data determines the time taken to retrieve it. RAM is measured in
megabytes and the speed is measured in nanoseconds and RAM chips can
read data faster than ROM.

Types of RAM: The two widely used forms of modern RAM are static
RAM (SRAM) and dynamic RAM (DRAM). In SRAM, a bit of data is
stored using the state of a six transistor memory cell. This form of RAM
IS more expensive to produce, but is generally faster and requires less
dynamic power than DRAM. In modern computers, SRAM is often
used as cache memory for the CPU. DRAM stores a bit of data using a
transistor and capacitor pair, which together comprise a DRAM cell.
The capacitor holds a high or low charge (1 or 0, respectively), and the
transistor acts as a switch that lets the control circuitry on the chip read
the capacitor's state of charge or change it. As this form of memory is
less expensive to produce than static RAM, it is the predominant form
of computer memory used in modern computers. The figure below shows
DRAM 8IL SRAM resp.

WL

7 Bit lifa r
. it ine 1_[1:;
§==C
= M 2 Mr.
— L Word lna o9 .'lffE j _':lt .?'-ir.;
' TT T
3X_FET [3]
1 L
45=C

i BL M, M, BL

= GND) L

Both static and dynamic RAM are considered volatile, as their state is lost
or reset when power is removed from the system. By contrast, read-only
memory (ROM) stores data by permanently enabling or disabling selected
transistors, such that the memory cannot be altered. Writeable variants of
ROM (such as EEPROM and flash memory) share properties of both
ROM and RAM, enabling data to persist without power and to be updated
without requiring special equipment. These persistent forms of
semiconductor ROM include USB flash drives, memory cards for
cameras and portable devices, and solid-state drives. ECC memory
(which can be either SRAM or DRAM) includes special circuitry to detect
and/or correct random faults (memory errors) in the stored data, using
parity bits or error correction codes.

In general, the term RAM refers solely to solid-state memory devices
(either DRAM or SRAM), and more specifically the main memory in
most computers. In optical storage, the term DVD-RAM is somewhat of
a misnomer since, unlike CD- RW or DVD-RW it does not need to be

118

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

erased before reuse. Nevertheless, a DVD- RAM behaves much like a
hard disc drive if somewhat slower.
Difference between Static Ram And Dynamic Ram

Static RAM Dynamic RAM
» SRAM uses transistor to store a > DRAM uses a separate capacitor
single bit of data to store each bit of data
» SRAM does not need periodic » DRAM needs periodic
refreshment to maintain data refreshment to maintain the

charge in the capacitors for data
DRAM’'s structure is simplex than
SRAM

DRAM’s are less expensive as
compared to SRAM

DRAM'’s are slower than SRAM
DRAM are used in Main memory

» SRAM's structure is complex
than DRAM

> SRAM are expensive as

compared to DRAM

SRAM are faster than DRAM

SRAM are used in Cache

memaory

Requirements of Memory Management System

Memory management keeps track of the status of each memory location,
whether it is allocated or free. It allocates the memory dynamically to the
programs at their request and frees it for reuse when it is no longer needed.
Memory management meant to satisfy some requirements that we should
keep in mind.

These Requirements of memory management are:

Relocation — The available memory is generally shared among a number
of processes in a multiprogramming system, so it is not possible to know
in advance which other programs will be resident in main memory at the
time of execution of his program. Swapping the active processes in and
out of the main memory enables the operating system to have a larger
pool of ready-to-execute process.

Y|Vl ¥l ¥

Y|V

When a program gets swapped out to disk memory, then it is not always
possible that when it is swapped back into main memory it occupies the
previous memory location, since the location may still be occupied by
another process. We may need to relocate the process to a different area
of memory. Thus there is a possibility that program may be moved in
main memory due to swapping.

Process control

information Process control block
Entry point
to program 2 Brancl)
Program instruction
Increasing Reference
address
to data
values
top of
stack

119

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

The figure depicts a process image. The process image occupies a
continuous region of the main memory. The operating system will need
to know many things including the location of process control
information, the execution stack, and the code entry. Within a program,
there are memory references in various instructions and these are called
logical addresses.

After loading the program into main memory, the processor and the
operating system must be able to translate logical addresses into physical
addresses. Branch instructions contain the address of the next instruction
to be executed. Data reference instructions contain the address of the byte
or word of data referenced.

Protection — There is always a danger when we have multiple programs
at the same time as one program may write to the address space of another
program. So every process must be protected against unwanted
interference when other process tries to write in a process whether
accidental or incidental. Between relocation and protection requirements
a trade-off occurs as the satisfaction of

relocation requirement increases the difficulty of satisfying the protection
requirement.

Prediction of the location of a program in main memory is not possible,
that’s why it is impossible to check the absolute address at compile time
to assure protection. Most of the programming language allows the
dynamic calculation of address at run time. The memory protection
requirement must be satisfied by the processor rather than the operating
system because the operating system can hardly control a process when it
occupies the processor. Thus it is possible to check the validity of memory
references.

Sharing — A protection mechanism must have to allow several processes
to access the same portion of main memory. Allowing each processes
access to the same copy of the program rather than have their own
separate copy has an advantage.

For example, multiple processes may use the same system file and it
is natural to load one copy of the file in main memory and let it shared by
those processes. It is the task of Memory management to allow
controlled access to the shared areas of memory without compromising
the protection. Mechanisms are used to support relocation supported
sharing capabilities.

Logical organization — Main memory is organized as linear or it can be a
one- dimensional address space which consists of a sequence of bytes
or words. Most of the programs can be organized into modules, some of
those are unmodifiable (read-only, execute only) and some of those
contain data that can be modified. To effectively deal with a user program,
the operating system and computer hardware must support a basic module
to provide the required protection and sharing. It has
the following advantages:

Modules are written and compiled independently and all the references

120

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

from one module to another module are resolved by “the system at run
time.

Different modules are provided with different degrees of protection.
There are mechanisms by which modules can be shared among processes.
Sharing can be provided on a module level that lets the user specify the
sharing that is desired.

Physical organization — The structure of computer memory has two levels
referred to as main memory and secondary memory. Main memory is
relatively very fast and costly as compared to the secondary memory.
Main memory is volatile. Thus secondary memory is provided for storage
of data on a long-term basis while the main memory holds currently used
programs. The major system concern between main memory and
secondary memory is the flow of information and it is impractical for
programmers to understand this for two reasons:

The programmer may engage in a practice known as overlaying when the
main memory available for a program and its data may be insufficient. It
allows different modules to be assigned to the same region of memory.
One disadvantage is that it is time-consuming for the programmer.

In a multiprogramming environment, the programmer does not know how
much space will be available at the time of coding and where that space
will be located inside the memory.

Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. What is the primary purpose of memory hierarchy?
A. To increase memory capacity
B. To minimize access time while managing cost
C. To improve data security
D. To reduce power consumption

2. Which memory level is fastest but most expensive?
A. Secondary memory
B. Main memory
C. Cache memory
D. Virtual memory

3. What principle makes memory hierarchy effective?

A. Locality of reference

B. Random access patterns

C. Sequential processing

D. Parallel execution
40 CONCLUSION
The computer memory can be divided into 5 major hierarchies that are
based on use as well as speed. A processor can easily move from any one
level to some other on the basis of its requirements. These five hierarchies

121

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

in a system’s memory are register, cache memory, main memory,
magnetic disc, and magnetic tape.

50 SUMMARY

The memory hierarchy in computer systems is a structured arrangement
of various types of memory based on speed, cost, and size, designed to
optimize performance and efficiency. At the top of the hierarchy are the
fastest and most expensive memory types, such as CPU registers and
cache, which provide quick access to frequently used data. Below these
are main memory, or RAM, which is slower and less costly but has higher
capacity. Further down are secondary storage devices like SSDs and
HDDs, which offer large storage capacities at lower speeds and costs. At
the bottom, tertiary storage includes external drives and cloud storage,
used for long-term data retention with the slowest access speeds. This
hierarchical arrangement ensures that the most critical data is accessed
rapidly while providing cost-effective solutions for large-scale data
storage needs.

6.0 Tutor marked assignment
1. What do you mean by Memory Hierarchy?
2. Explain the types of Memory Hierarchy

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1
1.B

2.C

3. A

7.0 References/ Further reading

Przybylski, S. A. (1990). Cache and memory hierarchy design: a
performance directed approach. Morgan Kaufmann.

Milenkovic, A., Milenkovic, M., & Barnes, N. (2003, March). A
performance evaluation of memory hierarchy in embedded systems.
In Proceedings of the 35th Southeastern Symposium on System Theory,
2003. (pp. 427-431). IEEE.

Przybylski, S. A. (1988). Performance directed memory hierarchy design.
Stanford University.

122

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

UNIT 3 VIRTUAL MEMORY
1.0 Introduction

2.0 Objectives

3.0 Main content

3.1 Virtual Memory

3.2 Types of virtual memory

3.3 Mapping in Pages

1.0 Introduction
Virtual Memory is a storage allocation scheme in which secondary
memory can be addressed as though it were part of the main memory. The
addresses a program may use to reference memory are distinguished from
the addresses the memory system uses to identify physical storage sites
and program-generated addresses are translated automatically to the
corresponding machine addresses. A memory hierarchy, consisting of a
computer system’s memory and a disk, that enables a process to operate
with only some portions of its address space in memory. A virtual
memory is what its name indicates- it is an illusion of a memory that is
larger than the real memory. We refer to the software component of
virtual memory as a virtual memory manager. The basis of virtual
memory is the noncontiguous memory allocation model. The virtual
memory manager removes some components from memory to make room
for other components. The size of virtual storage is limited by the
addressing scheme of the computer system and the amount of secondary
memory available not by the actual number of main storage locations.
2.0 objectives
At the end of this unit, you should be able to
Discuss the concept of virtual memory and
Discuss the various implementations of virtual memory.

The objectives of this module are to
Discuss the concept of virtual memory and
Discuss the various implementations of virtual memory.

3.1 The Virtual Memory

All of us are aware of the fact that our program needs to be available in
main memory for the processor to execute it. Assume that your computer
has something like 32 or 64 MB RAM available for the CPU to use.
Unfortunately, that amount of RAM is not enough to run all of the
programs that most users expect to run at once. For example, if you load
the operating system, an e-mail program, a Web browser and word
processor into RAM simultaneously, 32 MB is not enough to hold all of
them. If there were no such thing as virtual memory, then you will not be
able to run your programs, unless some program is closed. With virtual
memory, we do not view the program as one single piece. We divide it
into pieces, and only the one part that is currently being referenced by the
processor need to be available in main memory. The entire program is

123

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

available in the hard disk. As the copying between the hard disk and main
memory happens automatically, you don’t even know it is happening, and
it makes your computer feel like is has unlimited RAM space even though
it only has 32 MB installed. Because hard disk space is so much cheaper
than RAM chips, it also has an economic benefit.

Techniques that automatically move program and data blocks into the
physical main memory when they are required for execution are
called virtual memory techniques. Programs, and hence the processor,
reference an instruction and data space that is independent of the available
physical main memory space. The binary addresses that the processor
issues for either instructions or data are called virtual or logical
addresses. These addresses are translated into physical addresses by a
combination of hardware and software components. If a virtual address
refers to a part of the program or data space that is currently in the physical
memory, then the contents of the appropriate location in the main memory
are accessed immediately.

On the other hand, if the referenced address is not in the main memory,
its contents must be brought into a suitable location in the memory before
they can be used. Therefore, an address used by a programmer will be
called avirtual address,and the set of such addresses the address
space. An address in main memory is called a location or physical
address. The set of such locations is called the memory space, which
consists of the actual main memory locations directly addressable for
processing. As an example, consider a computer with a main-memory
capacity of 32M words. Twenty-five bits are needed to specify a physical
address in memory since 32 M = 225. Suppose that the computer
has available auxiliary memory for storing 235, that is, 32G words. Thus,
the auxiliary memory has a capacity for storing information equivalent to
the capacity of 1024 main memories. Denoting the address space by N
and the memory space by M, we then have for this example N = 32 Giga
words and M = 32 Mega words.

The portion of the program that is shifted between main memory and
secondary storage can be of fixed size (pages) or of variable size
(segments). Virtual memory also permits a program’s memory to be
physically noncontiguous , so that every portion can be allocated
wherever space is available. This facilitates process relocation. Virtual
memory, apart from overcoming the main memory size limitation, allows
sharing of main memory among processes. Thus, the virtual memory
model provides decoupling of addresses used by the program (virtual) and
the memory addresses (physical). Therefore, the definition of virtual
memory can be stated as, “ The conceptual separation of user logical
memory from physical memory in order to have large virtual memory on
a small physical memory”. It gives an illusion of infinite storage, though
the memory size is limited to the size of the virtual address.

Even though the programs generate virtual addresses, these addresses
cannot be used to access the physical memory. Therefore, the virtual to

124

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

physical address translation has to be done. This is done by the memory
management unit (MMU). The mapping is a dynamic operation, which
means that every address is translated immediately as a word is referenced
by the CPU. This concept is depicted diagrammatically in Figures 20 and
21. Figure 20 gives a general overview of the mapping between the logical
addresses and physical addresses. Figure 21 shows how four different
pages A, B, C and D are mapped. Note that, even though they are
contiguous pages in the virtual space, they are not so in the physical space.
Pages A, B and C are available in physical memory at non-contiguous
locations, whereas, page D is not available in physical storage.

|rwd ual Pages

: / re——d B L B
T~ ;‘ 5 EEE -
E I~ '. L mmm =
Virtual Mermary Physical Disk
MMemaory Map Memary

Figure 20. Overview of the mapping between logical and physical
addresses

Wirtual Physical
mchdress s
o A o

4K B 4K C
BK c BK

12K (] 12K i Physical
15K Y IR TRy

Virtual memory 20K

24K B
28K

Diisk

Figure 21. Four various mapping pages

125

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

3.2 Types of Virtual Memory

Address mapping using Paging: The address mapping is simplified if the
information in the address space and the memory space are each divided
into groups of fixed size. The physical memory is broken down into
groups of equal size called page frames and the logical memory is divided
into pages of the same size. The programs are also considered to be split
into pages. Pages commonly range from 2K to 16K bytes in length. They
constitute the basic unit of information that is moved between the main
memory and the disk whenever the translation mechanism determines that
amove is required. Pages should not be too small, because the access time
of a magnetic disk is much longer than the access time of the main
memory. The reason for this is that it takes a considerable amount of time
to locate the data on the disk, but once located, the data can be transferred
at a rate of several megabytes per second. On the other hand, if pages are
too large it is possible that a substantial portion of a page may not be used,
yet this unnecessary data will occupy valuable space in the main memory.
If you consider a computer with an address space of 1M and a memory
space of 64K, and if you split each into groups of 2K words, you will
obtain 29 (512) pages and thirty-two page frames. At any given time, up
to thirty-two pages of address space may reside in main memory in
anyone of the thirty-two blocks.

In order to do the mapping, the virtual address is represented by two
numbers: a page number and an offset or line address within the page. In
a computer with 2 p words per page, p bits are used to specify an offset
and the remaining high-order bits of the virtual address specify the page
number. In the example above, we considered a virtual address of 20 bits.
Since each page consists of 211 = 2K words, the high order nine bits of
the virtual address will specify one of the 512 pages and the low-order 11
bits give the offset within the page. Note that the line address in address
space and memory space is the same; the only mapping required is from
a page number to a block number.

The mapping information between the pages and the page frames is
available in a page table. The page table consists of as many pages that a
virtual address can support. The base address of the page table is stored
in a register called the Page Table Base Register (PTBR). Each process
can have one or more of its own page tables and the operating system
switches from one page table to another on a context switch, by loading a
different address into the PTBR. The page number, which is part of the
virtual address, is used to index into the appropriate page table entry. The
page table entry contains the physical page frame address, if the page is
available in main memory. Otherwise, it specifies wherein secondary
storage, the page is available. This generates a page fault and the operating
system brings the requested page from secondary storage to main storage.
Along with this address information, the page table entry also provides
information about the privilege level associated with the page and the

126

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

access rights of the page. This helps in p roviding protection to the page.
The mapping process is indicated in Figure 22. Figure 23 shows a typical
page table entry. The dirty or modified bit indicates whether the page was
modified during the cache residency period.

Page Number | Offset

Page Table

- B \ i
' Page _'/ﬂ_,. =

Table — +)

Base Pt “
Register \\ k.
| . R D

> '_t + \

Figure 22. The Mapping Process

1 1 1 1-2
M-bit || R-bit || V-bit | Protection bits || Page Frame Number

Figure 23. Example of Page Table entry

M — indicates whether the page has been written (dirty)

R — indicates whether the page has been referenced (useful for
replacement)

V — Valid bit

Protection bits — indicate what operations are allowed on this page

Page Frame Number says where in memory is the page

A virtual memory system is thus a combination of hardware and software
tech-niques. The memory management software system handles all the
software operations for the efficient utilization of memory space. It must
decide the answers to the usual four questions in a hierarchical memory
system:

Q1: Where can a block be placed in the upper level?

Q2: How is a block found if it is in the upper level?

Q3: Which block should be replaced on a miss?

Q4: What happens on a write?

The hardware mapping mechanism and the memory management
software together constitute the architecture of a virtual memory and

127

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

answer all these questions .
Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. What is the main purpose of virtual memory?
A. To increase processing speed
B. To provide the illusion of larger memory than physically available
C. To improve data security
D. To reduce power consumption

2. What unit is used to transfer data between main memory and secondary
storage in virtual memory systems?

A. Bytes

B. Words

C. Pages

D. Sectors

3. What happens when a program references a page not in main memory?
A. System crash
B. Page fault
C. Memory overflow
D. Cache miss

When a program starts execution, one or more pages are transferred into
main memory and the page table is set to indicate their position. Thus, the
page table entries help in identifying a page. The program is executed
from main memory until it attempts to reference a page that is still in
auxiliary memory. This condition is called a page fault. When a page fault
occurs, the execution of the present program is suspended until the
required page is brought into main memory. Since loading a page from
auxiliary memory to main memory is basically an I/O operation, the
operating system assigns this task to the 1/0O processor. In the meantime,
control is transferred to the next program in memory that is waiting to be
processed in the CPU. Later, when the memory block has been assigned
and the transfer completed, the original program can resume its operation.
It should be noted that it is always a write back policy that is adopted,
because of the long access times associated with the disk access.

Also, when a page fault is serviced, the memory may already be full. In
this case, as we discussed for caches, a replacement has to be done. The
replacement policies are again FIFO and LRU. The FIFO replacement
policy has the advantage of being easy to implement. !t has the
disadvantage that under certain circumstances pages are removed and
loaded from memory too frequently. The LRU policy is more difficult to
implement but has been more attractive on the assumption that the least
recently used page is a better candidate for removal than the least recently

128

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

loaded page as in FIFO. The LRU algorithm can be implemented by
associating a counter with every page that is in main memory. When a
page is referenced, its associated counter is set to zero. At fixed intervals
of time, the counters associated with all pages presently in memory are
incremented by 1. The least recently used page is the page with the highest
count. The counters are often called aging registers, as their count
indicates their age, that is, how long ago their associated pages have been
referenced.

Drawback of Virtual memory: So far we have assumed that the page
tables are stored in memory. Since, the page table information is used by
the MMU, which does the virtual to physical address translation, for every
read and write access, every memory access by a program can take at least
twice as long: one memory access to obtain the physical address and a
second access to get the data. So, ideally, the page table should be situated
within the MMU. Unfortunately, the page table may be rather large, and
since the MMU is normally implemented as part of the processor chip, it
Is impossible to include a complete page table on this chip. Therefore, the
page table is kept in the main memory. However, a copy of a small portion
of the page table can be accommodated within the MMU. This portion
consists of the page table entries that correspond to the most recently
accessed pages. A small cache, usually called the Translation Lookaside
Buffer (TLB) is incorporated into the MMU for this purpose. The TLB
stores the most recent logical to physical address translations. The
operation of the TLB with respect to the page table in the main memory
is essentially the same as the operation we have discussed in conjunction
with the cache memory.

An essential requirement is that the contents of the TLB be coherent with
the contents of page tables in the memory. When the operating system
changes the contents of page tables, it must simultaneously invalidate the
corresponding entries in the TLB. The valid bit in the TLB is provided for
this purpose. When an entry is invalidated, the TLB will acquire the new
information as part of the MMU’s normal response to access misses.

With the introduction of the TLB, the address translation proceeds as
follows. Given a virtual address, the MMU looks in the TLB for the
referenced page. If the page table entry for this page is found in the TLB,
the physical address is obtained immediately. If there is a miss in the TLB,
then the required entry is obtained from the page table in the main
memory and the TLB is updated.

Recall that the caches need a physical address, unless we use virtual
caches. As discussed with respect to cache optimizations, machines with
TLBs go one step further to reduce the number of cycles/cache access.
They overlap the cache access with the TLB access. That is, the high order
bits of the virtual address are used to look in the TLB while the low order
bits are used as index into the cache. The flow is as shown below.

129

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

] index]
32 TLB assoc Cache 1,K
lookup
4 bytes
10 2 ' [
| 1 100]
PA 2 12 PA | Data Hit/
[page # “Jdisp a] Miss

IF cache hit AND (cache tag = PA) then deliver data to CPU

ELSE IF [cache miss OR (cache tag = PA)] and TLB hit THEN
access memory with the PA from the TLB

ELSE do standard VA translation

The overlapped access only works as long as the address bits used to
index into the cache do not change as the result of VA translation. This
usually limits things to small caches, large page sizes, or high n-way set
associative caches if you want a large cache.

Advantages of Virtual Memory

More processes may be maintained in the main memory: Because we
are going to load only some of the pages of any particular process, there
is room for more processes. This leads to more efficient utilization of the
processor because it is more likely that at least one of the more numerous
processes will be in the ready state at any particular time.

A process may be larger than all of the main memory: One of the most
fundamental restrictions in programming is lifted. A process larger than
the main memory can be executed because of demand paging. The OS
itself loads pages of a process in the main memory as required.

It allows greater multiprogramming levels by using less of the available
(primary) memory for each process.

It has twice the capacity for addresses as main memory.

It makes it possible to run more applications at once.

Users are spared from having to add memory modules when RAM space
runs out, and applications are liberated from shared memory management.
When only a portion of a program is required for execution, speed has
increased.

Memory isolation has increased security.

It makes it possible for several larger applications to run at once.
Memory allocation is comparatively cheap.

It doesn’t require outside fragmentation.

It is efficient to manage logical partition workloads using the CPU.
Automatic data movement is possible.

Disadvantages of Virtual Memory

It can slow down the system performance, as data needs to be constantly
transferred between the physical memory and the hard disk.

It can increase the risk of data loss or corruption, as data can be lost if the
hard disk fails or if there is a power outage while data is being transferred

130

https://www.geeksforgeeks.org/different-types-ram-random-access-memory/

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

to or from the hard disk.

It can increase the complexity of the memory management system, as the
operating system needs to manage both physical and virtual memory.
Self-Assessment Exercises 2

Fill in the gaps in the sentences below with the most suitable words:

1. The management unit (MMU) performs virtual to physical
address translation.

2. Virtual memory allows allocation of memory and supports
sharing of main memory among processes.

3. The policy determines which page to remove when
memory is full.

4.0 Conclusion

In the ever-evolving world of computer science, the concept of virtual
memory has become increasingly important for both computer
architecture and organisation. This in-depth guide will provide an
overview of what virtual memory is, along with its benefits and
drawbacks. Delving into the role of virtual memory in the overall
structure of computer systems, you will gain an understanding of how it
interacts with primary memory and enhances system performance.
Furthermore, the discussion will encompass topics such as the purpose
and functionality of virtual memory, its role in memory management and
allocation, as well as addressing common issues and challenges
associated with its implementation. So, let's embark on a journey through
the fascinating realm of virtual memory and uncover its implications for
modern computer science.

50 Summary

To summarize, we have looked at the need for the concept of virtual
memory. Virtual memory is a concept implemented using hardware and
software. The restriction placed on the program size is not based on the
RAM size but based on the virtual memory size. There are three different
ways of implementing virtual memory. The MMU does the logical to
physical address translation. Paging uses fixed-size pages to move
between main memory and secondary storage. Paging uses page tables to
map the logical addresses to physical addresses. Thus, virtual memory
helps in dynamic allocation of the required data, sharing of data, and
providing protection. The TLB is used to store the most recent logical to
physical address translations.

6.0 Tutor Marked Assignment

1. What are the differences among various mapping
2. What is a virtual memory?
3. State five (5) advantages of virtual memory.

131

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1
1.B

2.C
3.B
Self-Assessment Exercise 2

1. Memory

2. Dynamic

3. Replacement

7.0 References/Further reading

Adamck, J. Foundation of coding New York Wiley 1991
Smith,a CACHE MEMORIES ACM computing surveys September 1992

132

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

UNIT 4 CACHE MEMORY

1.0 INTRODUCTION

2.0 OBJECTIVES

3.0 MAIN CONTEXT

3.1 CACHE MEMORY PRINCIPLES

3.2 ELEMENTS OF CACHE DESIGN

3.3 PENTIUM 4 CACHE ORGANIZATION

34 ARM CACHE ORGANIZATION

40 CONCLUSION

50 SUMMARY

6.0 TUTOR MARKED ASSIGNMENT

7.0 REFERENCES AND FURTHER READING

1.0 Introduction

A small but fast cache memory, in which the contents of the most
commonly accessed locations are maintained, can be placed between the
main memory and the CPU. When a program executes, the cache memory
Is searched first, and the referenced word is accessed in the cache if the
word is present. If the referenced word is not in the cache, then a free
location is created in the cache, and the referenced word is brought into
the cache from the main memory. In general most future access to main
memory by the processor will likely be to locations recently accessed. So
the cache memory automatically retains a copy of some of the recently
used words from the dynamic random-access memory (DRAM)

2.0 Objectives

At the end of this unit, you should be able to

- Explain the principles and elements of cache design\understood
Pentium 4 cache organization

- Discuss ARM cache organization

3.1 Cache memory principles

3.2 Replacement Policies in Associative Mapped Caches

3.3 Cache Performance

3.0 MAIN CONTENTS

3.1 Cache Principle

Cache Memory is a special very high-speed memory. The cache is a
smaller and faster memory that stores copies of the data from frequently
used main memory locations. There are various different independent
caches in a CPU, which store instructions and data. The most important
use of cache memory is that it is used to reduce the average time to access
data from the main memory. The data or contents of the main memory
that are used frequently by CPU are stored in the cache memory so that
the processor can easily access that data in a shorter time. Whenever the
CPU needs to access memory, it first checks the cache memory. If the
data is not found in cache memory, then the CPU moves into the main
memory. Cache memory is placed between the CPU and the main
memory.

133

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Characteristics of Cache Memory

Cache memory is an extremely fast memory type that acts as a buffer
between RAM and the CPU.

Cache Memory holds frequently requested data and instructions so that
they are immediately available to the CPU when needed.

Cache memory is costlier than main memory or disk memory but more
economical than CPU registers.

Cache Memory is used to speed up and synchronize with a high-speed
CPU.

;. Cache Memory F—

CPU Primary Memory Secondary Memory

Levels of Memory

Level 1 or Register: It is a type of memory in which data is stored and
accepted that are immediately stored in the CPU. The most commonly
used register is Accumulator, Program counter, Address Register, etc.
Level 2 or Cache memory: It is the fastest memory that has faster access
time where data is temporarily stored for faster access.

Level 3 or Main Memory: It is the memory on which the computer works
currently. It is small in size and once power is off data no longer stays in
this memory.

Level 4 or Secondary Memory: It is external memory that is not as fast as
the main memory but data stays permanently in this memory.

The speed of the main memory is very low in comparison with the speed
of modern processors. For good performance, the processor cannot spend
much of its time waiting to access instructions and data in main memory.
Hence, it is important to devise a scheme that reduces the time needed to
access the necessary information. Since the speed of the main memory
unit is limited by electronic and packaging constraints, the solution must
be sought in a different architectural arrangement. An efficient solution is
to use a fast cache memory, which essentially makes the main memory
appear to the processor to be faster than it is. The cache is a smaller, faster
memory which stores copies of the data from the most frequently used
main memory locations. As long as most memory accesses are to cached
memory locations, the average latency of memory accesses will be closer
to the cache latency than to the latency of main memory.

The effectiveness of the cache mechanism is based on a property of

134

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

computer programs called locality of reference. Analysis of programs
shows that most of their execution time is spent on routines in which many

instructions are executed repeatedly. These instructions may constitute a
simple loop, nested loops, or a few procedures that repeatedly call each
other. The actual detailed pattern of instruction sequencing is not
important — the point is that many instructions in localized areas of the
program are executed repeatedly during some time, and the remainder of
the program is accessed relatively infrequently. This is referred to as the
locality of reference. It manifests itself in two ways: temporal and spatial.
The first means that a recently executed instruction is likely to be executed
again very soon. The spatial aspect means that instructions in close
proximity to a recently executed instruction (with respect to the
instructions’ addresses) are also likely to be executed soon.

If the active segments of a program can be placed in a fast cache memory,
then the total execution time can be reduced significantly. Conceptually,
operation of a cache memory is very simple. The memory control
circuitry is designed to take advantage of the property of locality of
reference. The temporal aspect of the locality of reference suggests that
whenever an information item (instruction or data) is first needed,
this item should be brought into the cache where it will hopefully remain
until it is needed again. The spatial aspect suggests that instead of fetching
just one item from the main memory to the cache, it is useful to fetch
several items that reside at adjacent addresses as well. We will use the
term block to refer to a set of contiguous address locations of some size.
Another term that is often used to refer to a cache block is cache line.
The cache memory that is included in the memory hierarchy can
be split or unified/dual. A split cache is one where we have a separate data
cache and a separate instruction cache. Here, the two caches work in
parallel, one transferring data and the other transferring instructions. A
dual or unified cache is wherein the data and the instructions are stored in
the same cache. A combined cache with a total size equal to the sum of
the two split caches will usually have a better hit rate. This higher rate
occurs because the combined cache does not rigidly divide the number of
entries that may be used by instructions from those that may be used by
data. Nonetheless, many processors use a split instruction and data cache
to increase cache bandwidth.

When a Read request is received from the processor, the contents of a
block of memory words containing the location specified are transferred
into the cache. Subsequently, when the program references any of the
locations in this block, the desired contents are read directly from the
cache. Usually, the cache memory can store a reasonable number of
blocks at any given time, but this number is small compared to the total
number of blocks in the main memory. The correspondence between the
main memory blocks and those in the cache is specified by a mapping
function. When the cache is full and a memory word (instruction or data)
that is not in the cache is referenced, the cache control hardware must

135

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

decide which block should be removed to create space for the new block
that contains the referenced word. The collection of rules for making this
decision constitutes the replacement algorithm.

Therefore, the three main issues to be handled in cache memory are
Cache placement — where do you place a block in the cache?

Cache identification — how do you identify whether the requested
information is available in the cache or not?

Cache replacement — which block will be replaced in the cache, making
way for an incoming block?

These questions are answered and explained with an example main
memory size of 1IMB (the main memory address is 20 bits), a cache
memory of size 2KB and a block size of 64 bytes. Since the block size is
64 bytes, you can immediately identify that the main memory has 214
blocks and the cache has 25 blocks. That is, the 16K blocks of main
memory have to be mapped to the 32 blocks of cache. There are three
different mapping policies — direct mapping, fully associative mapping
and n-way set associative mapping that are used.

The word is then accessed in the cache. Although this process takes longer
than accessing main memory directly, the overall performance can be
improved if a high proportion of memory accesses are satisfied by the
cache. Modern memory systems may have several levels of cache,
referred to as Level 1 (L1), Level 2 (L2), and even, in some cases, Level
3 (L3). In most instances the

L1 cache is implemented right on the CPU chip. Both the Intel Pentium
and the IBM-Motorola PowerPC G3 processors have 32 Kbytes of L1
cache on the CPU chip.

A cache memory is faster than main memory for a number of reasons.
Faster electronics can be used, which also results in a greater expense in
terms of money, size, and power requirements. Since the cache is small,
this increase in cost is relatively small. A cache memory has fewer
locations than a main memory, and as a result it has a shallow decoding
tree, which reduces the access time.

The cache is placed both physically closer and logically closer to the CPU
than the main memory, and this placement avoids communication delays
over a shared bus. A typical situation is shown in Figure 24. A simple
computer without a cache memory is shown in the left side of the figure.

136

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

CPU Main Main
400 MHz Memory Memory
10 MHz Cache 10 MHz
Bus 66 MHz Bus 66 MHz
Without cache With cache

Figure 24: Placement of Cache in a Computer System

This cache-less computer contains a CPU that has a clock speed of 400
MHz, but communicates over a 66 MHz bus to a main memory that
supports a lower clock speed of 10 MHz. A few bus cycles are normally
needed to synchronize the CPU with the bus, and thus the difference in
speed between main memory and the CPU can be as large as a factor of
ten or more. A cache memory can be positioned closer to the CPU as
shown in the right side of Figure 2, so that the CPU sees fast accesses over
a 400 MHz direct path to the cache.

3.2 Replacement Policies in Associative Mapped Caches

When a new block needs to be placed in an associative mapped cache, an
available slot must be identified. If there are unused slots, such as when a
program begins execution, then the first slot with a valid bit of 0 can
simply be used.

When all of the valid bits for all cache slots are 1, however, then one of
the active slots must be freed for the new block. Four replacement policies
that are commonly used are: least recently used (LRU), first-in first-out
(FIFO), least frequently used (LFU), and random. A fifth policy that is
used for analysis purposes only, is optimal.

For the LRU policy, a time stamp is added to each slot, which is updated
when any slot is accessed. When a slot must be freed for a new block, the
contents of the least recently used slot, as identified by the age of the
corresponding time stamp, are discarded and the new block is written to
that slot. The LFU policy works similarly, except that only one slot is
updated at a time by incrementing a frequency counter that is attached to
each slot. When a slot is needed for a new block, the least frequently used
slot is freed.

The FIFO policy replaces slots in round-robin fashion, one after the next
in the order of their physical locations in the cache. The random
replacement policy simply chooses a slot at random. The optimal
replacement policy is not practical, but is used for comparison purposes
to determine how effective other replacement policies are to the best

137

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

possible.

That is, the optimal replacement policy is determined only after a program
has already executed, and so it is of little help to a running program.
Studies have shown that the LFU policy is only slightly better than the
random policy. The LRU policy can be implemented efficiently, and is
sometimes preferred over the others for that reason.

Advantages and Disadvantages of the Associative Mapped Cache

The associative mapped cache has the advantage that any main memory
block can be placed into any cache slot. This means that regardless of how
irregular the data and program references are, if a slot is available for the
block, it can be stored in the cache. This results in considerable hardware
overhead needed for cache bookkeeping. Each slot must have a 27-bit tag
that identifies its location in main memory, and each tag must be searched
in parallel. This means that in the example above the tag memory must be
27 X 214 bits in size, and as described above, there must be a mechanism
for searching the tag memory in parallel. Memories that can be searched
for their contents, in parallel, are referred to as associative, or content-
addressable memories. By restricting where each main memory block can
be placed in the cache, we can eliminate the need for an associative
memory. This kind of cache is referred to as a direct mapped cache, which
Is discussed in the next section.

Self-Assessment Exercises 1

Answer the following questions by choosing the most suitable option:

1. What is the primary purpose of cache memory?
A. To store large amounts of data permanently
B. To provide faster access to frequently used data
C. To backup important files
D. To connect to external devices

2. Which replacement policy removes the least recently used item?
A. FIFO
B. LRU
C. Random
D. Optimal

3. What are the two forms of locality of reference?
A. Spatial and temporal
B. Physical and logical
C. Static and dynamic
D. Sequential and random

138

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Direct Mapped Cache

Figure 24 shows a direct mapping scheme for a 232 word memory. As
before, the memory is divided into 227 blocks of 25 = 32 words per block,
and the cache consists of 214 slots. There are more main memory blocks
than there are cache slots, and a total of 227/214 = 213 main memory
blocks can be mapped onto each cache slot. In order to keep track of
which of the 213 possible blocks is in each slot, a 13-bit tag field is added
to each slot which holds an identifier in the range from 0 to 213 — 1.

Valid Dirty Tag

NS
137 Slot 0 \ Block 0 11211 E’;S—ﬁ
[T | o Block !
I O
: Block 214
LI | Slot 2141 Block 214+1
Cache Memory
Block 227
Main Memory

Figure 24: A Direct Mapping Scheme for Cache Memory

This scheme is called “direct mapping” because each cache slot
corresponds to an explicit set of main memory blocks. For a direct
mapped cache, each main memory block can be mapped to only one slot,
but each slot can receive more than one block. The mapping from main
memory blocks to cache slots is performed by partitioning an address into
fields for the tag, the slot, and the word as shown below:

The 32-bit main memory address is partitioned into a 13-bit tag field,
followed by a 14-bit slot field, followed by a five-bit word field. When a
reference is made to a main memory address, the slot field identifies in
which of the 214 slots the block will be found if it is in the cache. If the
valid bit is 1, then the tag field of the referenced address is compared with
the tag field of the slot. If the tag fields are the same, then the word is
taken from the position in the slot specified by the word field. If the valid
bit is 1 but the tag fields are not the same, then the slot is written back to
main memory if the dirty bit is set, and the corresponding main memory
block is then read into the slot. For a program that has just started
execution, the valid bit will be 0, and so the block is simply written to the
slot. The valid bit for the block is then set to 1, and the program resumes
execution.

139

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

Tag Slot Word
13 bits 14 bits 5 bits

Advantages and Disadvantages of the Direct Mapped Cache

The direct mapped cache is a relatively simple scheme to implement. The
tag memory in the example above is only 13 x 214 bits in size, less than
half of the associative mapped cache. Furthermore, there is no need for an
associative search, since the slot field of the main memory address from
the CPU is used to “direct” the comparison to the single slot where the
block will be if it is indeed in the cache.

This simplicity comes at a cost. Consider what happens when a program
references locations that are 219 words apart, which is the size of the
cache. This pattern can arise naturally if a matrix is stored in memory by
rows and is accessed by columns. Every memory reference will result in
a miss, which will cause an entire block to be read into the cache even
though only a single word is used.

Worse still, only a small fraction of the available cache memory will
actually be used. Now it may seem that any programmer who writes a
program this way deserves the resulting poor performance, but in fact,
fast matrix calculations use power-of-two dimensions (which allows shift
operations to replace costly multiplications and divisions for array
indexing), and so the worst-case scenario of accessing memory locations
that are 219 addresses apart is not all that unlikely.

To avoid this situation without paying the high implementation price of a
fully associative cache memory, the set associative mapping scheme can
be used, which combines aspects of both direct mapping and associative

mapping.

3.3 Cache Performance

Notice that we can readily replace the cache direct mapping hardware
with associative or set associative mapping hardware, without making any
other changes to the computer or the software. Only the runtime
performance will change between methods. Runtime performance is the
purpose behind using a cache memory, and there are a number of issues
that need to be addressed as to what triggers a word or block to be moved
between the cache and the main memory.

Cache read and write policies are summarized in Figure 25. The policies
depend upon whether or not the requested word is in the cache. If a cache
read operation is taking place, and the referenced data is in the cache, then
there is a “cache hit” and the referenced data is immediately forwarded to
the CPU. When a cache miss occurs, then the entire block that contains
the referenced word is read into the cache.

In some cache organizations, the word that causes the miss is immediately
forwarded to the CPU as soon as it is read into the cache, rather than
waiting for the remainder of the cache slot to be filled, which is known as
a load-through operation. For a non-interleaved main memory, if the word

140

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

occurs in the last position of the block, then no performance gain is
realized since the entire slot is brought in before load-through can take
place. For an interleaved main memory, the order of accesses can be
organized so that a load-through operation will always result in a
performance gain.

Cache Cache
Read Write
A A A A
Data is Data is Data is Data 1s
in the not in the in the not in the
cache cache cache cache
Forward Load Through: Write Through: Write Allocate: Bring
to CPU. Forward the word Write data to both line into cache. then
as cache line is cache and main update it.
filled. memeory. -o1-
-or- -or- Write No-Allocate:
Fill cache line and . . Update main memory
i i Write Back: Write P i -
then forward word. only.

data to cache only.
Defer main memory
write until block is
flushed.

Figure 25: Cache Read and Write Policies

For write operations, if the word is in the cache, then there may be two
copies of the word, one in the cache, and one in main memory. If both are
updated simultaneously, this is referred to as write-through. If the write is
deferred until the cache line is flushed from the cache, this is referred to
as write-back.

Even if the data item is not in the cache when the write occurs, there is
the choice of bringing the block containing the word into the cache and
then updating it, known as write-allocate, or to update it in main memory
without involving the cache, known as write-no-allocate. Some
computers have separate caches for instructions and data, which is a
variation of a configuration known as the Harvard architecture (also
known as a split cache), in which instructions and data are stored in
separate sections of memory.

Since instruction slots can never be dirty (unless we write self-modifying
code, which is rare these days), an instruction cache is simpler than a data
cache. In support of this configuration, observations have shown that most
of the memory traffic moves away from main memory rather than toward
it.

Statistically, there is only one write to memory for every four read
operations from memory. One reason for this is that instructions in an
executing program are only read from the main memory, and are never

141

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

written to the memory except by the system loader. Another reason is that
operations on data typically involve reading two operands and storing a
single result, which means there are two read operations for every write
operation.

A cache that only handles reads, while sending writes directly to main
memory can thus also be effective, although not necessarily as effective
as a fully functional cache. As to which cache read and write policies are
best, there is no simple answer. The organization of a cache is optimized
for each computer architecture and the mix of programs that the computer
executes. Cache organization and cache sizes are normally determined by
the results of simulation runs that expose the nature of memory traffic.
4.0 Summary

In this unit, you have learnt that:

Cache memory, also called CPU memory, is high-speed static random
access memory (SRAM) that a computer microprocessor can access more
quickly than it can access regular random access memory (RAM).

A cache memory is faster than main memory and has fewer locations than
a main memory.

A cache is placed both physically closer and logically closer to the CPU
than the main memory

The physical memory is smaller than the size of the program, but is larger
than any single routine.

Self-Assessment Exercises 2

Fill in the gaps in the sentences below with the most suitable words:

1. In a direct mapped cache, each main memory block can be mapped to
only slot.

2. Cache occurs when the requested data is found in the cache.

3. The policy determines whether data is written to both cache
and main memory simultaneously.

4.0 Conclusion

If the cache is designed properly then most of the time the processor will
request memory words that are already in the cache. Cache is memory
placed in between the processor and main memory. Cache is responsible
for holding copies of main memory data for faster retrieval by the
processor.Cache memory consists of a collection of blocks. Each block
can hold an entry from the main memory.

50 SUMMARY

Cache memory, also called CPU memory, is high-speed static random
access memory (SRAM) that a computer microprocessor can access more
quickly than it can access regular random access memory (RAM).

A cache memory is faster than main memory and has fewer locations than
a main memory.

142

IFT 212 COMPUTER ARCHITECTURE AND ORGANIZATION

A cache is placed both physically closer and logically closer to the CPU
than the main memory

The physical memory is smaller than the size of the program, but is larger
than any single routine.

6.0 Tutor marked assignment

For a direct mapped cache a main memory address is viewed as consisting
of two fields list and define the two fields.

7.1 Possible Answers to Self-Assessment Exercises

Self-Assessment Exercise 1
1.B
2.B
3. A

Self-Assessment Exercise 2
1. One

2. Hit

3. Write-through

7.0 Reference and further reading

Computer Organization and Design — The Hardware / Software Interface,
David A. Patterson and John L. Hennessy, 4th Edition, Morgan
Kaufmann, Elsevier, 2009.

Computer Architecture — A Quantitative Approach , John L. Hen
nessy and David A.Patterson, 5th Edition, Morgan Kaufmann, Elsevier,
2011.

Computer Organization, Carl Hamacher, Zvonko Vranesic and Safwat
Zaky, 5th.Edition, McGraw- Hill Higher Education, 2011

143

